
Language Guide

“ MATHPAR ”

VERSION 15.00

Gennadi Malaschonok

25.01.2025

CONTENTS

1 Introduction 7

2 Acquaintance and first steps 10
2.1. Input data and run the calculations 11

2.1.1. Working with files 13
2.2. Mathematical functions 13

2.2.1. Constants . 13
2.2.2. Functions of one argument 14
2.2.3. Functions of two arguments 14

2.3. Actions with functions 15
2.4. Solution of the algebraic equation 17
2.5. Solution of the algebraic inequalities 18
2.6. Solution of the algebraic inequalities systems 19
2.7. Operations on subsets of the real numbers 20
2.8. Vectors and matrices . 22
2.9. Generation of random elements 25

2.9.1. Generation of numbers 26
2.9.2. Generation of random polynomial 26
2.9.3. Generation of random matrix 27

3 Construction of 2D and 3D plots 28
3.1. Plotting functions . 28

3.1.1. Plots of explicit functions 29
3.1.2. Plots of parametric functions 32
3.1.3. Plot of table function 38
3.1.4. Functions that are defined on the points table of

values . 41

2

3.1.5. Construction of various plots of functions in one
coordinate system 42

3.1.6. Construction of graphs 44
3.2. 3D function graphs plotting 49

3.2.1. Explicit 3D function graphs plotting. Server-side
building . 49

3.2.2. Explicit 3D function graphs plotting. Client-side
building . 50

3.2.3. Plotting 3D graphs of functions that are paramet-
rically defined. Server-side building 51

3.2.4. Plotting 3D graphs of functions that are paramet-
rically defined. Client-side building 53

3.2.5. Ploting of 3D graphs of functions that are defined
implicitly . 54

3.2.6. Plot different 3D graphs of functions in one coor-
dinate system . 56

3.3. Geometry . 56
3.3.1. Example (draw circle) 57
3.3.2. Operators . 57

4 Environment for mathematical objects 61
4.1. Setting of environment 61
4.2. Numerical sets with standard operations 62
4.3. Several numerical sets 63
4.4. Idempotent algebra and tropical mathematics 63
4.5. Constants . 64

5 Functions of one and several variables 67
5.1. Mathematical functions 67

5.1.1. Constants . 67
5.1.2. Functions of one argument 67
5.1.3. Functions of two arguments 68

5.2. Calculation of the value of a function in a point 69
5.3. Substitution of functions instead of ring variables 71
5.4. Calculation of the limit of a function 71
5.5. Differentiation of functions 73
5.6. Integration of the compositions of elementary functions 74
5.7. Simplification of compositions 77

3

5.8. Arithmetic-geometric mean 79
5.9. The complete elliptic integrals of the first and second kind 80
5.10. The period of a simple gravity pendulum 81

6 Series 83

7 Solution of systems of differential equations 87
7.1. The solution of first-order differential equations 87
7.2. Solution of differential equations 88
7.3. Solution of systems of differential equations 91
7.4. LaplaceTransform and InverseLaplaceTransform 103
7.5. Calculation of the characteristics of dynamic objects and

systems . 104

8 Polynomial computations 107
8.1. Calculation of the value of a polynomial at the point . . 107
8.2. Factorization of polynomials. Bringing polynomials to the

standard form. 108
8.3. Geometric progression. Summation of polynomial with

respect to the variables 108
8.4. Groebner basis of polynomial ideal 110
8.5. Calculations in quotient ring of ideal 110
8.6. Solution of systems of nonlinear algebraic equations . . 111
8.7. Other polynomial functions 112

9 Matrix functions 113
9.1. Calculation of the transposed matrix 113
9.2. Getting the dimensions of a matrix and a vector 113
9.3. The calculation of adjoint and inverse matrices 114

9.3.1. The calculation of inverse matrix 114
9.3.2. Calculation of adjoint matrix 115

9.4. Calculation of the matrix determinant and rank 116
9.5. Calculation of the conjugate matrix 117
9.6. Computing SVD-decomposition 118
9.7. Calculation of the generalized inverse matrix 118
9.8. Computation of the kernel and echelon form 119

9.8.1. Computation of the echelon form 119
9.8.2. Computation of the kernel 120

9.9. Calculating the characteristic polynomial of matrix . . . 120

4

9.10. Calculating LSU-decomposition of the matrix 121

9.11. Choletsky Decomposition 123

9.12. LSUWMdet decomposition 124

9.13. Calculating Bruhat decomposition of the matrix 125

9.14. Linear programming . 127

10 The functions of the probability theory and statis-
tics 132

10.1. Functions of the discrete random quantity 132

10.2. Function for sampling 135

11 Operators of control. Procedural programming 137

11.1. Procedures and functions 137

11.2. Operators of branching and looping 138

12 Calculations in idempotent algebras 140

12.1. Tropical algebras . 140

12.2. Solving systems of linear algebraic equations 141

12.3. Solving systems of linear algebraic inequalities 141

12.4. The solution of the Bellman equation 142

12.4.1. The homogeneous Bellman equation 142

12.4.2. The inhomogeneous Bellman equation 143

12.5. The solution Bellman inequality 144

12.5.1. The homogeneous Bellman inequality 144

12.5.2. The inhomogeneous Bellman inequality 144

12.6. Finding the shortest path between the vertices of the graph144

12.6.1. Calculation of the table of shortest distances for
all vertices of the graph 144

12.6.2. Calculation of the shortest distances between two
vertices of the graph 145

13 The calculations on a supercomputer 146

13.1. Parallel polynomial computations 147

13.2. Parallel matrix computations 147

14 Operators and mathematical symbols 151

5

15 Numerical Algorithms 156
15.1. Evaluation of definite and improper integrals 156

15.1.1. Calculation of definite integrals. 156
15.1.2. Calculation of improper integrals of the first kind. 157

16 Examples of solutions of physical problems 159
16.1. Transferring of the heat 159
16.2. Kinematics . 160
16.3. Molecular Physics . 161
16.4. Pendulum . 162

6

Chapter 1

Introduction

This guide for language “Mathpar” will help you to solve mathematical
problems. You could use Mathpar at school and at home, at university
and at work.

You can use it when you wish to do a simple numerical and algebraic
operations or to plot functions.

It will help you to solve problems of different branches of math-
ematical analysis, algebra, geometry, problems in physics, chemistry,
and more.

If you are a professional mathematician, you can get rid of the rou-
tine calculations and manipulate very large mathematical objects, using
supercomputers.

You can operate with functions and functional matrices, to obtain
the exact numerical and analytical solutions and solutions in which the
numerical coefficients have a required accuracy.

For the first acquaintance with Mathpar and study of simple func-
tional symbolic-numerical operations it is sufficient to study the first
three chapters. The rules of data entry and running the calculations
is described in the second chapter. Designations are given for elemen-
tary functions such as logarithm, sine, cosine, etc., and constants —
π, e, i. There are described how to specify a vector and matrix, an
arithmetic operations with vectors, the generator of random numbers,
random polynomials and random matrices, how to solve an algebraic
equation. You can see an example and the results for each command.

The third chapter is devoted to the construction of graphs of func-
tions. The system allows you to plot functions defined explicitly, para-

7

metrically or points. Moreover, you can build multiple graphs in one
coordinate system. This chapter provides commands for plotting and
examples of commands.

The fourth chapter describes how to set the mathematical environ-
ment, i.e. a space of mathematical objects. At any point the user can
change the environment, setting a new algebraic space. Moving from
some environment to the current environment, as a rule, should be per-
formed explicitly. In some cases, such a transformation to the current
environment is automatic.

The fifth chapter describes the commands to specify the mathemat-
ical functions of one or more variables, their compositions, the calcula-
tions of the function at a point, substitution of the function, calculate
the limit of a function at a point, symbolic integration compositions of
elementary functions. For each example the results of calculations are
given.

The sixth chapter is devoted to the series. The commands for adding,
subtracting, multiplying of series and for the expansion of a function in
a Taylor series with a certain number of members are given. We consider
some examples.

The seventh chapter describes the commands for the solution of ordi-
nary differential equations and systems, as well as systems of differential
equations with partial derivatives.

The eighth chapter is devoted to polynomial computations. We con-
sider the evaluation of polynomial at the point, the summation of the
polynomial, computation of Gröbner bases of polynomial ideals over the
rational numbers. For each command an example is given.

The ninth chapter describes the calculation of matrix functions. We
can find the transposed matrix, the determinant of a matrix, the adjoint
and inverse matrix, echelon form of matrix, the kernel, the characteristic
polynomial of the matrix, and others.

The tenth chapter is devoted to the functions of probability theory
and mathematical statistics. We can find here how to specify a discrete
random variable, the command to calculate the expectation of a dis-
crete random variable, variance, standard deviation, sum and product
of two discrete random variables, the coefficient covariance of discrete
random variables, the correlation coefficient, the construction of the
polygon distribution and the distribution function of a discrete random
variable. This chapter describes the commands to specify sampling and

8

computing functions for them: the sample mean, sample variance, factor
covariance and correlation coefficient for two samples.

You can create your procedures and functions. The eleventh chapter
describes Mathpar as a procedural programming language with state-
ments, procedures and functions. Examples of written procedures using
branching statements and loops statements are given.

In the twelfth chapter describes the commands that control the com-
putation on a supercomputer. In order to solve computational problems
that require a lot of computation time or large amounts of memory space
you can use special functions, which provide the user with the resources
of supercomputer. You can compute a Gröbner basis, adjoint matrix,
echelon form of the matrix, inverse matrix, determinant, the kernel of a
linear operator, the characteristic polynomial, etc.

In the thirteenth chapter lists the major operators is given.

9

Chapter 2

Acquaintance and first
steps

This chapter is devoted to a first acquaintance with possibilities which
Mathapar opens. The language MathPar, which is described below, may
be considered as a kind of development of a TeX language. TeX serves for
writing mathematical texts and preparing them for publication. It may
be called ”passive” in comparison with the language MathPar, which
permits to execute computations, and so is a self-depended mathemat-
ical language. A problem definition and a result of computations are
written in MathPar.

Just after computations you see the whole mathematical text as a
pdf-image which is accustomed in scientific and technical publications.

The result may be further used in different ways.

(1) You may click the text with your mouse, and it would return to
the initial form of the MathPar language. Then you may continue to
edit the text or pass to a next task. There is another way to change a
form of a text — using a button ” ”, placed between buttons ”▶” and
”+”.

(2) You may click the image of the mathematical text with
the right mouse button, and the drop-down menu appears. The upper
field Show-Math-As permits to pass to the choice of language. It is
suggested to chose Tex or MathML. You may open a field you need.

For example, a matrix of the size 2 × 2 will be written in MathPar
in the following way:

10

A=[[a,b],[c,d]];
in TeX as follows:
A= \left(\begin{array}{cc}a&b \\c&d\\ \end{array}\right).
In MathML it is much more complicated.
The text obtained in Tex or in MathML you may copy and past into

TeX or HTML file and use for publication. You may also save it as an
image and use in any document. It is useful, for example, when it is
necessary to save a plot or a solution of a problem

2.1. Input data and run the calculations

At the center of the screen there is an entry field where it is possible
to enter mathematical expressions. To start a task press the button ▶.
When your cursor is disposed in the field of input you can press the
combination of keys Ctrl+Enter.

Example is shown in figure 2.1.
On the top of the screen you can see buttons Help and Handbook .

This is way to the help files. All the fields of the help pages are active,
and you can run the help examples. You can copy text from the samples
and transfer them into the field for user input.

When you enter mathematical expressions, they must be separated
by a semicolon (;) or text comments, which are enclosed in quotation
marks.

When you need to have a mathematical expression in the comment
as part of the comment, it must be skirted in the dollar signs ($). For
example, you can write a comment:
” Two different notations $\exp(x)$ and $\ê x$ are used for the expo-
nential function.”

To obtain results it is necessary to use the command \print() and to
specify the names of those expressions which are required to be printed.

If the list of statement does not contain a print statement \print()
or any other operator (\plot(), \prints(), etc.), it will be shown the
result obtained in the last statement.

All commands or operators should begin with the symbol ”back
slash” (\).

The button + lets us add new entry fields. You can press the combi-
nation of keys Crtl+Del to remove this field or you can press the button
x at the right side of this field on the screen.

11

Figure 2.1: Entering data into a working page

12

The button C is designed to clean the values of all previously typed
names. It is useful to have such button when the numerical values are
entered in some sections, and the calculations are done in other sections.
Clearing all names allows you to obtain a symbolic expression rather
than the number.

On the left of the screen you can see fields with a current environment
and a current random access memory. Under the fields differant buttons
for enter of functions are placed.

2.1.1. Working with files

Functions for working with files are available at the ”Files” collapsible
panel from menu at the left.

Here is what you can do with files:
1) Save the result of the last run section as PDF file with ”Save

PDF” button. You can specify desirable paper size (dimensions are in
centimeters), by default page has size A4 (21x29.7 cm)

2) Upload text files to Mathpar server with ”Upload file” button.
Under the button there is a list of uploaded files. Files should contain
Mathpar expressions or tables in specific format.

Table contains of header – it’s the first row with arbitrary strings in
it – and number rows. Columns are separated with tabulation symbol.
Functions for working with tables are available at the panel ”Graphics
and tables” (see also section 3.1 Plotting functions of help system).

3) Input Mathpar expressions from uploaded files with \fromFile()
function. E.g., to make an expression from file myfile.txt and assign this
expression to variable a run: a = \fromFile(′myfile.txt′).

2.2. Mathematical functions

The following notations for elementary functions and constants are
accepted.

2.2.1. Constants

\i — imaginary unit,
\e — the basis of natural logarithm,
\pi — the ratio of length of a circle to its diameter,
\infty — infinity sign.

13

2.2.2. Functions of one argument

\ln — natural logarithm,
\lg — decimal logarithm,
\sin — sine,
\cos — cosine,
\tg — tangent,
\ctg — cotangent,
\arcsin — arcsine,
\arccos — arccosine,
\arctg — arctangent,
\arcctg — arccotangent,
\sh — sine hyperbolic,
\ch — cosine hyperbolic,
\th — tangent hyperbolic,
\cth — cotangent hyperbolic,
\arcsh — arcsine hyperbolic,
\arcch — arccosine hyperbolic,
\arcth — arctangent hyperbolic,
\arccth — arccotangent hyperbolic,
\exp — exponent,
\sqrt — root square,
\abs — absolute value of real numbers (module for complex num-

bers),
\sign — number sign (returns 1, 0, −1 when number sign is +, 0,

−, correspondingly),
\unitStep(x, a) — is a function which, for x > a takes the value 1,

and for x < a takes the value 0;
\fact — factorial. It is defined for positive integers. It is equivalent

to n!.

2.2.3. Functions of two argumentŝ— degree,
\log — logarithm of function with given base,
\rootOf(x, n) — root of degree n of x,
\Gamma — the function Gamma,
\Gamma2 — the function Gamma 2,
\binomial — binomial coefficient.

14

Example.

SPACE = R64[x, y];

f1 = \sin(x);

f2 = \sin(\cos(x + \tg(y)));

f3 = \sin(x^2) + y;

\print(f1, f2, f3);

Returns:
SPACE = R64[x, y];
f1 = sin(x);
f2 = sin(cos(x+ tg(y)));
f3 = sin(x2) + y.

2.3. Actions with functions

For the above functions and their compositions, you can calculate
the value of the function at the point, substitute the expression into
a function instead of arguments, calculate the limit of the function,
calculate derivative, etc. For this purpose, the following commands are
defined.

To calculate the value of a function at a point you must
run \value(f, [var1, var2, . . . , varn]), where f —function, and
var1, var2, . . . , varn — values of the variables of the ring.

For the substitution of expressions to the function you must ex-
ecute the \value(f, [func1, func2, . . . , funcn]), where f — a function
func1, func2, . . . , funcn— expressions that are substituted for the cor-
responding variables.

To calculate the limit of a function at a point you must run
\lim(f, var), where f — this function, and var — the point at which
you want to find the limit.

In order to calculate the derivative of f in the variable y in the ring
Z[x, y, z] you must run \D(f, y). To find a mixed first-order derivative
of the function f there is a command \D(f, [x, y]), to find the derivative
of higher order you must use the command \D(f, [x̂ k, ẑm, ŷ n]), where
k,m, n indicate the order of the derivative of variables.

Examples.

SPACE = R[x, y];

f = \sin(x^2 + \tg(y^3 + x));

15

g = \value(f, [1, 2]);

\print(g);

Returns:
in: SPACE = R[x, y];

f = sin(x2 + tg(y3 + x));
g = value(f, [1, 2]);
print(g);

out: g = 0.52;

SPACE = Z[x, y];

f = x + y;

g = f^2;

r = \value(f, [x^2, y^2]);

\print(g, f, r);

Returns:
in: SPACE = Z[x, y];

f = x+ y;
g = f2;
r = value(f, [x2, y2]);
print(g, f, r);

out: g = y2 + 2yx+ x2;
f = y + x;
r = x2 + y2

SPACE = R64[x];

f = \sin(x) / x;

g = \lim(f, 0);

\print(g);

Returns:
in: SPACE = R64[x];

f = sin(x)/x;
g = lim(f, 0);
print(g);

out: g = 1.00;

SPACE = Z[x, y];

f = \sin(x^2 + \tg(y^3 + x));

h = \D(f, y);

\print(h);

16

Returns:
in: SPACE = Z[x, y];

f = sin(x2 + tg(y3 + x));
h = D(f, y);
print(h);

out: h = 3y2cos(x2 + tg(y3 + x))/(cos(y3 + x))2;

2.4. Solution of the algebraic equation

To obtain a solution of the algebraic equation use the command
\solve.

The command FLOATPOS = N is used for setting the environ-
ment. It sets the number of decimal places after the decimal point (N),
which should appear in the print of the numerical results of approxi-
mate calculations. It is not connected with the process of calculation,
but only with printing. By default, FLOATPOS = 2.

Examples.

SPACE = R64[x];

b = \solve(x^2 - 5x + 6 = 0);

Returns:
in: SPACE = R64[x];

b = solve(x2 − 5x+ 6 = 0);
out: [2.00, 3.00];

SPACE = R64[x];

FLOATPOS = 6;

b = \solve(x^4 + 2x + 1 = 0);

Returns:
in: SPACE = R64[x];

FLOATPOS = 6;
b = solve(x4 + 2x+ 1 = 0);

out: [−0.543689,−1.000000];

SPACE = R64[x];

FLOATPOS = 0;

b = \solve(x^3 + 3x^2 + 3x + 1 = 0);

17

Returns:
in: SPACE = R64[x];

FLOATPOS = 0;
b = solve(x3 + 3x2 + 3x+ 1 = 0);

out: −1.

2.5. Solution of the algebraic inequalities

To obtain a solution of the algebraic inequalities use the command
\solve, which contains the inequalities. We can solve strict and not
strict algebraic inequalities. Open interval is indicated in parentheses (
), closed interval is indicated inbrackets [], set is denoted by braces { }.

Examples.

SPACE = R[x];

b = \solve(x^2-5x+6 < 0);

Returns:
in: SPACE = R[x];

b = solve(x2 − 5x+ 6 < 0);
out: (2, 3).

SPACE = R[x];

b = \solve((x+1)^2(x-3)(x+5) \ge 0);

Returns:
in: SPACE = R[x];

b = solve((x+ 1)2(x− 3)(x+ 5) ≥ 0);
out: (−∞,−5] ∪ {−1} ∪ [3,∞).

SPACE = R[x];

b = \solve((x^2+11x+28)/(x+5) \le 0);

Returns:
in: SPACE = R[x];

b = solve((x2 + 11x+ 28)/(x+ 5) ≤ 0);
out: (−∞,−7] ∪ (−5,−4].

SPACE = Q[x];

b = \solve(x^2 + 4x - 7 = 0);

18

Returns:
in: SPACE = Q[x];

b = solve((x2 + 4x− 7 = 0);
out: [(

√
11 + (2)), (2−

√
11)];.

2.6. Solution of the algebraic inequalities
systems

To obtain a solution of the algebraic inequalities systems use the
command \solve[In1, In2, ..., Ink], where [In1, In2, ..., Ink] — vector,
where contain inequalities. System contain strict and not strict algebraic
inequalities. Open interval is indicated in parentheses (), closed interval
is indicated inbrackets, set is denoted by braces { }.

Examples.

SPACE = R[x];

b = \solve([x^2+4x-5 > 0, x^2-2x-8 < 0]);

Returns:
in: SPACE = R[x];

b = solve([x2 + 4x− 5 > 0, x2 − 2x− 8 < 0]);
out: (1, 4).

SPACE = R[x];

b = \solve([x^2-x-6 \ge 0, x^2-4x-12 < 0]);

Returns:
in: SPACE = R[x];

b = solve([x2 − x− 6 ≥ 0, x2 − 4x− 12 < 0]);
out: (−4,−2] ∪ [3, 4).

SPACE = R[x];

b = \solve([x^2-4 < 0, x+1 > 0, 0.5-x > 0]);

Returns:
in: SPACE = R[x];

b = solve([x2 − 4 < 0, x+ 1 > 0, 0.5− x > 0]);
out: (−1, 0.5).

19

2.7. Operations on subsets of the real num-
bers

To specify a subset use the command \set((a, b), (c, d]), where
a, b, c, d are numbers. Subset may consist of open intervals indicated
by parentheses (), half-open intervals indicated by [) or (], segments
indicated by brackets [] and points indicated by braces , or like seg-
ments.

Simple subset is denoted by the same brackets, but you need to add
a backslash (\) in front of each bracket. For example \(3, 4.5)\], \[7, 7\]
or \8\. The operator \set is not required.

SPACE = R64[x];

a = \set((-2,1),[2,5),(5.75,6],[8,8]);

Returns:
in: SPACE = R[x];

a = set((−2, 1), [2, 5), (5.75, 6], 8);
out: ((−2.00), 1.00) ∪ [2.00, 5.00) ∪ (5.75, 6.00] ∪ {8.00}.

With subsets we can make the following operations: union, intersec-
tion, subtraction, calculation of the symmetric difference and comple-
ment set, using the commands \cup, \cap, \setminus, \triangle and
symbol (’) apostrophe.

SPACE = R64[x];

A=\(1,3\)\cup\[5,16\);

B=\(2,4\)\cup\[10,20\);

C=A\cup B;

D=A\cap B;

E=A\triangle B;

F=A \setminus B;

G=A’;

\print(C,D,E,F,G);

Returns:
in: SPACE = R64[x];
A = (1, 3) ∪ [5, 16);
B = (2, 4) ∪ [10, 20);
C = A ∪B;

20

D = A ∩B;
E = A△B;
F = A \B;
G = A′;
print(C,D,E, F,G);
out: C = (1, 4) ∪ [5, 20)
D = (2, 3) ∪ [10, 16)
E = (1, 2] ∪ [3, 4) ∪ [5, 10) ∪ [16, 20)
F = (1, 2] ∪ [5, 10)
G = (−∞, 1] ∪ [3, 5) ∪ [16,∞)

21

2.8. Vectors and matrices

To define the row-vector you have to list its elements in square brack-
ets.

To define the matrix you must take in square brackets a list of row
vectors, for example, A = [[1, 2], [3, 4]].

Element of the matrix may be obtained by specifying the row and
column number in the two lower indexes of the matrix, and an element
of the vector may be obtained by specifying its number in the lower
index of the vector. The is an example for obtaining elements. You have
to set a = \elementOf(A), and then obtain a {i, j}. If B is a vector,
then you have to set b = \elementOf(B), and then obtain element
b {i}.

You can get a row of the matrix as a vector-row and column of the
matrix as a column vector. The row vector obtained by specifying the
number of row in the first index and a sign of question (?) in the second
index, for example, a {i, ?}. Column vector obtained by specifying the
number of column in the second index and the sign of question (?) in
the first index, for example, a {?, j}.

The names of non-commutative objects, such as matrices and vec-
tors, must be written with the symbol ¡¡back slash¿¿ (\) and a capital
letter.

To denote zero and identity matrix you can use the caps \O and
\I, with two indexes, indicating the number of rows and columns. With
the help of the symbol \I, you can create any size square matrix whose
elements on the main diagonal are equal to 1, and the remaining ele-
ments are zero. For example, \I {2, 3} and \O {2, 2} denote the matrix(

1 0 0
0 1 0

)
and

(
0 0
0 0

)
. You can specify zero vectors, indicating

the index number of elements: \O {3} denote the vector [0, 0, 0] and
I {3} denotes the vector [1, 0, 0].

Column vector can be formed by transposing the row vector, for
example, D = [7, 2, 3]T — it is a column vector with three elements.

Arithmetic operations are indicated by standard signs “ + ”, “ - ”,
“ * ”.

Example 1.

SPACE = Z[x];

A = [[x, 4], [y, 5]];

22

V = [x, y, 1, 2, x^6];

\print(A, V);

Returns:
in: SPACE = Z[x];

A =

(
x 4
y 5

)
;

V = [x, y, 1, 2, x6];
print(A, V);

out: A =

(
x 4
y 5

)
;

V = [x, y, 1, 2, x6];
Example 2.

SPACE = Z[x, y];

A = [[3, 4], [3, 1]];

B = [[2, 5], [4, 7]];

C = A + B;

G = A - B;

T = A * B;

\print(C, G, T);

Returns:
in: SPACE = Z[x];

A =

(
3 4
3 1

)
;

B =

(
2 5
4 7

)
;

C = A+B;
G = A−B;
T = A ∗B;
print(C,G, T);

out: C =

(
5 9
7 8

)
;

G =

(
1 −1
−1 −6

)
;

T =

(
22 43
10 22

)
;

Example 3.

23

SPACE = Z[x];

A = [[1, 4], [-4, 5]];

a = \elementOf(A);

det = a_{1, 1} * a_{2, 2} - a_{1, 2} * a_{2, 1};

\print(det);

Returns:
in: SPACE = Z[x];

A =

(
1 4
−4 5

)
;

det = a1,1 ∗ a2,2 − a1,2 ∗ a2,1;
print(det);

out: det = 21;
Example 4.

SPACE = Z[x, y];

A = [[x^2, y], [4, x+y]];

a = \elementOf(A);

B = a_{1, ?};

C = a_{?, 2};

b = \elementOf(B);

c = \elementOf(C);

h = b_{2} * c_{1, 1};

\print(B, C, h);

Returns:
in: SPACE = Z[x, y];

A =

(
x2 y
4 x+ y

)
;

a = \elementOf(A);
B = a1,?;
C = a?,2;
b = \elementOf(B); c = \elementOf(C);
h = b2 · c1;
print(B,C, h);

out: B =

(
x2

4

)
;

C =
(
4 y + x

)
;

h = (y2);
Example 5.

24

SPACE = Z[x, y];

A = 3x * \I_{2, 2};

B = \O_{3, 3};

\print(A, B);

Returns:
in: SPACE = Z[x, y];

A = 3x ∗ I2,2;
B = O3,3;
print(A,B);

out: A =

(
3x 0
0 3x

)
;

B =

 0 0 0
0 0 0
0 0 0

 .

Example 6.

SPACE = R64[x];

A = [\pi / 2, \pi];

B = \sin(A);

C = \value(B);

\print(A, B, C);

Returns:
in: SPACE = R64[x];

A = [π/2, π];
B = sin(A);
C = value(B);
print(A,B,C);

out: A = [π/2, π];
B = sin([π/2, π]);
C = [1, 0];

2.9. Generation of random elements

Mathpar can generate of random elements such as numbers, poly-
nomials and matrices.

25

2.9.1. Generation of numbers

To create a random number you have to execute the command
\randomNumber(k), where k is the number of bits.

Example.

SPACE = Z[x, y, z];

a = \randomNumber(10);

b = \randomNumber(100);

\print(a, b);

Returns:
SPACE = Z[x, y, z];
a = 944;
b = 850800798881527094755736477974.

2.9.2. Generation of random polynomial

To create a random polynomial with three variables you have to exe-
cute the command \randomPolynom(d1, d2, . . . , ds, dens, bits), where
dens is a polynomial density, bits is a number of bits in numerical co-
efficients, and d1, d2, . . . , ds denote the highest degrees of variable. If
dens = 100, you get a polynomial that has all coefficients non-zero, all
(d1+1)(d2+1) ·(ds+1) non-zero terms. When dens < 100, only dens%
coefficients are nonzero, and the remaining (100− dens)% will be zero.

Example.

SPACE=Z[x,y,z];

f = \randomPolynom(4, 4, 10, 5);

g = \randomPolynom(4, 4, 10, 5);

h = f + g;

\print(f, g, h);

Returns:
SPACE = Z[x, y, z];
f = y3x3;
g = 10yx3 + 2y;
h = y3x3 + 10yx3 + 2y;

26

2.9.3. Generation of random matrix

To create arandom numerical matrix you have to execute the command
\randomMatrix(m,n, dens, bits), where last two arguments are the
density of matrix and the number of bits in numerical elements of ma-
trix, and first two arguments denote the sizes of a matrix.

To create a polynomial matrix you have to execute the command
\randomMatrix(m,n, dens, d1, d2, . . . , ds, pol dens, pol bits)), where
first three arguments denote the size of a matrix and its density, last
two arguments are the density of polynomials and the number of bits in
numerical coefficients, the numbers d1, d2, . . . , ds set the highest degrees
of polynomial variables.

Example.

SPACE = Z[x, y, z];

matr_n = \randomMatrix(4, 4, 100, 5);

matr_p = \randomMatrix(2, 2, 100, 1, 1, 4, 25, 3);

\print(matr_n, matr_p);

Returns:
SPACE = Z[x, y, z];

matrn =

22 2 10 28
23 28 1 19
30 24 19 12
27 22 22 17

 ;

matrp =

(
6z3x+ 7z3 + 5z2 + 3y 7z4x+ 2z4 + 7zyx+ 5x

z4yx+ 2zy + 7y + 7x+ 4 7z2x+ 7zx+ z + 6x

)
.

27

Chapter 3

Construction of 2D and
3D plots

3.1. Plotting functions

Mathpar table allows you to build graphics (tableP lot), graphs of
functions, which are explicitly defined (plot) or parametric (paramPlot).
You can build several different graphs in one coordinate system
(showP lots).

Setting charting given command \set2D(). If the command
\set2D() has no parameters, the boundaries for the graphs are cal-
culated automatically, and for explicit functions selected interval [0, 1]
along the horizontal axis. The names of the coordinate axes will be X
and Y , respectively. Title in the schedule will be absent.

If the command \set2D() user not asked, it is automatically set
\set2D() with no arguments at the beginning of the session the user.

There are 7 basic options of this command with the following
parameters: 1) \set2D()
2) \set2D(x0, x1);
3) \set2D(x0, x1,′ title′);
4) \set2D(x0, x1, y0, y1);
5) \set2D(x0, x1, y0, y1,′ title′);
6) \set2D(x0, x1,′ title′,′ nameOX ′,′ nameOY ′);
7) \set2D(x0, x1, y0, y1,′ title′,′ nameOX ′,′ nameOY ′).

28

Numbers x0 and x1 (x0 < x1) sets the interval along the axis of
OX. Numbers y0 and y1 (x0 < x1) sets the interval along the axis of
OY . If these parameters are not specified, are calculated automatically.
nameOX — signature on the axis OX, nameOY — signature on the
axis OY , title — header graphics.

In addition, permitted to ask one or two keys that should be the
last in the list of options: BW and ES. BW refers to the construction
of Cheraw and white graphics. ES indicates equality zoom scale x axis
ranges from y. A total of 7 ∗ 4 = 28 different ways to set the parameters
environment.

Character line which is depicted in the graph of each of the functions
(plot, tableP lot, paramPlot) can be different: the solid line, dotted line,
and the line that ends with an arrow. To do this, these options are: ’dash’
(dotted line), ’arrow’ (arrows) and a combination of ’dashAndArrow’,
which should be at the end of the parameter list of these functions.

For example, \plot(x2 + 1,′ dash′).

If several separate graphs have names such as P=\plot(x2);
Q=\tablePlot([[1, 2], [3, 4]]); in this case they may be represented along
with the command \showPlots([P,Q]).

The resulting plot can be downloaded from the site. To do this, click
on the button Download , which is located below the graph. The file is
on schedule to be downloaded to your computer.

3.1.1. Plots of explicit functions

To obtain the plot of an explicit function f = f(x) the command
\plot(f). Other options commands:
1) \plot(f, [x0, x1]), where [x0, x1] — interval along the axis of OX;
2) \plot(f, [x0, x1],′ options′), where [x0, x1] — interval along the axis
of OX, ’options’ — takes the following values:
1)’dash’ — schedule will be a dashed line;
2)’arrow’ — the last point on the graph is drawn with an arrow;
3)’dashAndArrow’ — schedule will be a dashed line and the last point
of the graph is drawn with an arrow.
3) \plot(f,′ options′). You can plot functions with parametric variables.
The parametric variables are assigned when you set a environment (see
ex.3).

Example 1.

29

SPACE = R64[x, y, z];

\set2D(-10, 10, -10, 10);

f = x^2 + \tg(x^2 - 1);

p = \plot(f);

Returns:
in: f = x2 + tg(x2 − 1);
out: fig. 3.1.

Figure 3.1: f = x2 + tg(x2 − 1)

To get the graphs of several functions in one figure you must enclose
the list of these functions in square brackets, as in the following example.

Example 2.

SPACE = R64[x, y, z];

\set2D(-10, 10, -10, 10);

f = \sin(x);

p = \plot([f, \tg(x)]);

Returns:
in: f = sin(x);
out: fig. 3.2.

30

Figure 3.2: f = sin(x) and g = tg(x)

Example 3.

SPACE = R64[x, y, z];

\set2D(-10, 10, 0, 2);

f = \unitBox(x,3);

p = \plot(f);

Example 4.

SPACE = R64[x, a, b, c];

\set2D(0, 2\pi, 0, 2);

\plot(a\sin(bx) + c);

Example 5.

SPACE = R64[x, y, z];

\set2D(-10, 10, -10, 10,’a’,’b’,’title’);

f = x^2;

p = \plot(f);

Example 6.

SPACE = R64[x, y, z];

\set2D(-10, 10, -10, 10);

f = x;

p = \plot(f,’dash’);

31

Example 7.

SPACE = R64[x, y, z];

f = x;

p = \plot(f,[-5,5],’arrow’);

Example 8.

SPACE = R64[x, y, z];

\set2D(-10, 10, -10, 10);

\plot([x,-x],’arrow’);

3.1.2. Plots of parametric functions

To obtain the plot of parametric function {f = x(t), g = y(t)}
the command \paramPlot([f, g], [t0, t1]) is used, where [t0, t1] is
an interval of variation of t. Another version of the command:
\paramPlot([f, g], [t0, t1],′ options′), where [t0, t1] — the range of
values for the parameter change, ’options’ — the following values:
1)’dash’ — schedule will be a dashed line;
2)’arrow’ — the last point on the graph is drawn with an arrow;
3)’dashAndArrow’ — schedule will be a dashed line and the last point
of the graph is drawn with an arrow.

Example 1.

SPACE = R64[x, y, z];

g = \sin(x);

k = \cos(x);

f = \paramPlot([g, k], [0, 2\pi]);

Returns:
in: g = sin(x); k = cos(x);
out: fig. 3.3.

32

Figure 3.3

Example 2.

SPACE = R64[x, y, z];

g = x\sin(x);

k = x\cos(x);

f = \paramPlot([g, k], [0, 5\pi]);

Returns:
in: g = x sin(x); k = x cos(x);
out: fig. 3.4.

33

Figure 3.4

Example 3.

SPACE = R64[x, y, z];

g = 2\cos(x)+\cos(2x);

k = 2\sin(x)-\sin(2x);

f = \paramPlot([g, k], [0, 2\pi]);

Returns:
in: g = 2 cos(x) + cos(2x); k = 2 sin(x)− sin(2x);
out: fig. 3.5.

34

Figure 3.5

Example 4.

SPACE = R64[x, y, z];

g = 2\sin(x)^3;

k = 2\cos(x)^3;

f = \paramPlot([g, k], [0, 2\pi]);

Returns:
in: g = 2 sin(x)3; k = 2 cos3(x)
out: fig. 3.6.

35

Figure 3.6

Example 5.

SPACE = R64[x, y, z];

g = (1+\cos(x))\cos(x);

k = (1+\cos(x))\sin(x);

f = \paramPlot([g, k], [0, 2\pi]);

Returns:
in: g = (1 + cos(x)) cos(x); k = (1 + cos(x)) sin(x);
out: fig. 3.7.

36

Figure 3.7

Example 6.

SPACE = R64[x, y, z];

g = \sin(x)(\exp(\cos(x))-2\cos(4x)+\sin(x/12)^5);

k = \cos(x)(\exp(\cos(x))-2\cos(4x)+\sin(x/12)^5);

f = \paramPlot([g, k], [0, 12\pi]);

Returns:
in: g = sin(x)(exp(cos(x))− 2 cos(4x) + sin5(x/12));

k = cos(x)(exp(cos(x))− 2 cos(4x) + sin5(x/12));
out: fig. 3.8.

37

Figure 3.8

Example 7.

SPACE = R64[x, y, z];

\set2D(’’,’’,’’,’’,’x(t)’,’y(t)’,’paramPlot’);

g = \sin(x)(\exp(\cos(x))-2\cos(4x)+\sin(x/12)^5);

k = \cos(x)(\exp(\cos(x))-2\cos(4x)+\sin(x/12)^5);

f = \paramPlot([g, k], [0, 12\pi]);

Example 8.

SPACE = R64[x, y, z];

g = \sin(x);

k = \cos(x);

f = \paramPlot([g, k], [0, 2\pi],’dashAndArrow’);

3.1.3. Plot of table function

To plot a function, which is defined by the ta-
ble of points you have to execute the command:
\tablePlot([[x1, . . . , xn], [y11, . . . , a1n], . . . , [yk1, . . . , akn]]).
Another version of the command: \tablePlot([[x1, . . . , xn], [y11, . . . , a1n], . . . , [yk1, . . . , akn]],

′ options′)

38

,where ’options’ — the following values:
1)’dash’ — schedule will be a dashed line;
2)’arrow’ — the last point on the graph is drawn with an arrow;
3)’dashAndArrow’ — schedule will be a dashed line and the last point
of the graph is drawn with an arrow.

Example 1.

SPACE = R64[x, y, z];

\tablePlot(

[

[0, 1, 2, 3, 4, 5],

[0, 1, 4, 9, 16, 25],

[0, -1, -2, -3, -4, -5],

[0, 4, 8, 12, 16, 20]

]);

Returns:
in:
out: fig. 3.9.

Figure 3.9

Example 2.

SPACE=R64[x];

39

\set2D(-1,5,-10,10);

"We have a table function"

A = [[0, 1, 2, 3, 4, 5], [3, 0, 4, 10, 5, 10]];

t = \table (A);

"We approximate this function by a polynomial of degree 4:"

p = \approximation(t, 4);

"Building the graph of the polynomial:" P = \plot (p, [1,5]);

"Plot a table function:" T = \tablePlot (t);

"We construct both graphs in one coordinate system:"

\showPlots ([P, T]);

Returns:
in:
out: 0.54x4 − 5.64x3 + 18.38x2 − 17.28x+ 3.17

fig. 3.10.

Figure 3.10

Example 3.

SPACE = R64[x, y, z];

\set2D(-10, 10, -10, 10, ’’,’’, ’Header of Graphics’);

\tablePlot(

[[-3, -6, -6, -3, 3, 6, 6, 3, -3],

40

[6, 3, -3, -6, -6, -3, 3, 6, 6]]);

Example 4.

SPACE = R64[x, y, z];

\tablePlot(

[[-3, -6, -6, -3, 3, 6, 6, 3, -3],

[6, 3, -3, -6, -6, -3, 3, 6, 6]],’arrow’);

Example 5.

SPACE = R64[x, y, z];

\tablePlot(

[[-3, -6, -6, -3, 3, 6, 6, 3, -3],

[6, 3, -3, -6, -6, -3, 3, 6, 6]], ’dash’);

Example 6.

SPACE = R64[x, y, z];

\tablePlot(

[[-3, -6, -6, -3, 3, 6, 6, 3, -3],

[6, 3, -3, -6, -6, -3, 3, 6, 6]], ’dashAndArrow’);

3.1.4. Functions that are defined on the points table
of values

Plotting functions on the points given by the tabulated values use the
command:

\pointsPlot([[x1, . . . , xn], [y1, . . . , yn]], [s1, . . . , sn], [kv1, . . . , kvn], [kg1, . . . , kgn]),
where sn — signature points, kvn — rate of rotation about the point
(ranges from 0 to 7, and signifies a shift in the (kvn * 45) degrees),
kgn — shift factor along the axis OX (if it is negative then the
displacement is to the left).

The reduced variants of this command:
\pointsPlot([[x1, . . . , xn], [y1, . . . , yn]], [s1, . . . , sn])
or \pointsPlot([[x1, . . . , xn], [y1, . . . , yn]], [s1, . . . , sn], [kv1, . . . , kvn])
or \pointsPlot([[x1, . . . , xn], [y1, . . . , yn]], [s1, . . . , sn], [kv1, . . . , kvn], [kg1, . . . , kgn])
Example 1.

41

\set2D(-10, 10, -10, 10);

\pointsPlot([[0, 1, 2], [0, 1, 4]],[’a’,’b’,’c’]);

Example 2.

\pointsPlot([[0, 1, 2], [0, 1, 4]],[’a’,’b’,’c’],[0,2,4]);

Example 3.

\pointsPlot([[0, 1, 2], [0, 1, 4]],[’a’,’b’,’c’],[0,2,4],[0,-5,5]);

Example 4.

\pointsPlot([[0, 1, 2], [0, 1, 4]]);

Example 5.

SPACE = R64[x, y, z];

f1=\tablePlot([[1, 1], [1, 5]]);

f2=\tablePlot([[1, 5], [1, 1]]);

f3=\tablePlot([[5, 5], [1, 5]]);

f4=\tablePlot([[1, 5], [5, 5]]);

f5=\pointsPlot([[1, 1, 5, 5],[1, 5, 5, 1]],[’A’,’B’,’C’,’D’],[6,0,0,2]);

\showPlots([f1, f2, f3, f4, f5]);

Example 6.

SPACE = R64[x, y, z];

f1=\tablePlot([[1, 1], [1, 5]]);

f2=\tablePlot([[1, 5], [1, 1]]);

f3=\tablePlot([[5, 5], [1, 5]]);

f4=\tablePlot([[1, 5], [5, 5]]);

f5=\pointsPlot([[1, 1, 5, 5],[1, 5, 5, 1]],[’A’,’B’,’C’,’D’],[6,0,0,2]);

\showPlots([f1, f2, f3, f4, f5], ’noAxes’);

3.1.5. Construction of various plots of functions in
one coordinate system

To construct the plots of functions defined in different ways, you must
first build a plot of each function and then execute the command
\showPlots([f1, f2, . . . , fn]).

Another version of the command:

42

\showPlots([f1, f2, f3, f4],′ noAxes′), where ’noAxes’ — parame-
ter indicating image graphics without axes, or

\showPlots([f1, f2, f3, f4],′ lattice′), where ’lattice’ — parameter
indicating the image graph with the lattice.

Example 1.

SPACE = R64[x, y, z];

\set2D(-20, 20, -20, 20);

f1 = \plot(\tg(x));

f2 = \tablePlot([[0, 1, 4, 9, 16, 25], [0, 1, 2, 3, 4, 5]]);

f3 = \paramPlot([\sin(x), \cos(x)], [-10, 10]);

f4=\tablePlot([[0, 1, 4, 9, 16, 25], [0, -1, -2, -3, -4, -5]]);

\showPlots([f1, f2, f3, f4]);

Returns:
in:
out: fig. 3.11.

Figure 3.11: Graphs of functions defined in different ways

43

Example 2.

p1=\tablePlot([[-1, -3, 3, 3, -3, -3],[4, 3, 3, -3 , -3, 3]]);

p2=\tablePlot([[5, 5, 3, 3, 5, -1],[4, -2, -3, 3, 4, 4]]);

p3=\tablePlot([[-3, -1, -1],[-3, -2, 4]], ’dash’);

p4=\tablePlot([[-1, 5],[-2, -2]], ’dash’);

\showPlots([p1,p2,p3,p4], ’noAxes’);

Example 3.

p1=\tablePlot([[-1, -3, 3, 3, -3, -3],[4, 3, 3, -3, -3, 3]]);

p1p=\pointsPlot([[-1, -3, 3, 3, -3],[4, 3, 3, -3 , -3]],

[’F’,’B’,’C’,’D’,’A’],[0,0,0,4,4]);

p2=\tablePlot([[5, 5, 3, 3, 5, -1],[4, -2, -3, 3, 4, 4]]);

p3=\tablePlot([[-3, -1, -1],[-3, -2, 4]],’dash’);

p4=\tablePlot([[-1, 5],[-2, -2]],’dash’);

p2p=\pointsPlot([[5, 5, -1],[4, -2, -2]],[’G’,’H’,’E’],[0,4,4]);

\showPlots([p1,p2,p3,p4,p1p,p2p], ’noAxes’);

3.1.6. Construction of graphs

To construct the graph, use the command

\plotGraph([[a11, . . . , a1n], . . . , [an1, . . . , ann]], [[x1, . . . , xn], [y1, . . . , yn]]),

where [[a11, . . . , a1n], . . . , [an1, . . . , ann]] — adjacency matrix,

[[x1, . . . , xn], [y1, . . . , yn]] — matrix of coordinates.

Example 1.

SPACE = R64[x, y, z];

\plotGraph([[0,1,1,0,1,0],[1,0,0,1,1,0],[1,0,0,0,1,1],[0,1,0,0,0,0],

[1,1,1,0,0,1],[0,0,1,0,1,0]],[[3,2,4,1,3,5],[3,2,2,1,1,1]]);

Returns:
in:
out: pict. 3.12.

44

Figure 3.12: graph

In addition, you can run only with the first parameter

\plotGraph([[a11, . . . , a1n], . . . , [an1, . . . , ann]]),

where [[a11, . . . , a1n], . . . , [an1, . . . , ann]] — adjacency matrix.

Example 2.

45

SPACE = R64[x, y, z];

\plotGraph([[0,1,1,0,1,0],[1,0,0,1,1,0],[1,0,0,0,1,1],[0,1,0,0,0,0],

[1,1,1,0,0,1],[0,0,1,0,1,0]]);

Returns:
in:
out: pict. 3.13.

46

Figure 3.13: graph

You need to run a single numeric parameter \plotGraph(N), where
N — the number of vertices in a graph.

Example 3.

SPACE = R64[x, y, z];

\plotGraph(6);

47

Returns:
in:
out: pict. 3.14.

Figure 3.14: graph

48

3.2. 3D function graphs plotting

The environment for plotting 3D graphs is set with the command
\set3D()

There are several variants for this command:
1) \set3D(x0, x1, y0, y1, z0, z1);
2) \set3D(x0, x1, y0, y1, z0, z1, gridSize);
3) \set3D(x0, x1, y0, y1, z0, z1, gridSize, framesNumber);
4) \set3D(x0, x1, y0, y1, z0, z1, gridSize, framesNumber, [a1, a2, ...]);

The numbers x0 and x1 (x0 < x1) define the interval on the OX
axis. The numbers y0 and y1 (y0 < y1) define an interval on the OY
axis. The numbers z0 and z1 (z0 < z1) specify the interval on the OZ
axis. gridSize is responsible for the grid size of the box in space in which
the graph is drawn. framesNumber is responsible for the number of
frames when plotting a graph with parameters, whose change can be
observed as a change of frames. a1 and a2 are responsible for the final
value of the function parameters. These values will be set in the sliders
that appear under the text with the user’s request. When parameters
are changed during frame changes, their values will change in the range
from 1.0 to a1 for the first parameter.

3.2.1. Explicit 3D function graphs plotting. Server-
side building

You can build 3D graphs of the functions that are defined explicitly.

To obtain the plot 3D of an explicit function f = f(x, y) the com-
mand \plot3d(f, [x0, x1, y0, y1]), is used, where [x0, x1] is an interval
on the axis OX, [y0, y1] is an interval on the axis OY .

The obtained plot can be rotated and to increase or decrease.

Moving the mouse holding down the left ¡¡mouse¿¿ button causes
the rotation of the coordinate system of schedule. After stopping the
movement of the ¡¡mouse¿¿ graphics are redrawn in the new rotated
coordinate system.

Moving the mouse holding down the left mouse button while press-
ing Shift button leads to a change in image scale. After stopping the
movement of the ¡¡mouse¿¿ graphics are redrawn in the new scale.

Example.

49

SPACE = R64[x, y, z];

f = x^2 / 20 + y^2 / 20;

\plot3d(f, [-20, 20, -20, 20]);

SPACE = R64[x, y, z];

\plot3d([x / 20 + y^2 /20, x^2 /20 + y /20], [-20, 20, -20, 20]);

SPACE = R64[x, y, a, b];

f = ax^2 / 20 + by^2 / 20;

\plot3d(f, [-20, 20, -20, 20]);

3.2.2. Explicit 3D function graphs plotting. Client-
side building

Also, graphs of functions that are explic-
itly defined can be plotted with the command
\explicitPlot3d(f, xMin, xMax, yMin, yMax, zMin, zMax), where
the numbers xMin, xMax, yMin, yMax, zMin, zMax define a region
in space having the shape of a box, in which the explicit function is
represented.

In addition, the following set of arguments are allowed:
(f, xMin, xMax, yMin, yMax, zMin, zMax, gridSize), where
gridSize is responsible for the size of the grid of the box in which the
graph is plotted.

You can specify only one function, as follows: \explicitPlot3d(f),
in this case, it is supposed to represent the function f in a cube 20 ×
20× 20, whose center is at the origin.

Using \explicitPlot3d() you can rotate the coordinate system by
moving the mouse pointer with the left button pressed. You can also
shift the origin of the coordinate system by moving the mouse pointer
with the right button pressed.

To plot the graph of a function in time with changing parameters
you should first specify the number of frames. Then, you should set
the final value of parameters using the sliders. To build the graph, you
should press the ’Plot’ button. The value of the number of frames and
parameters on the sliders can be specified via \set3D().

Example.

SPACE = R64[x, y];

50

f = (x^2+y^2)/20;

ePl=\explicitPlot3d(f, -10, 10, -10, 10, -10, 10, 40);

SPACE = R64[x, y, a];

\set3D(-10, 10, -10, 10, -10, 10, 40, 25, [0.2]);

f = (ax^2+y^2)/20;

ePl=\explicitPlot3d(f);

3.2.3. Plotting 3D graphs of functions that are para-
metrically defined. Server-side building

Mathpar allows you to build 3D graphs of functions that are specified
parametrically.

To plot a graph, you need to pass 3 func-
tions f(x, y), g(x, y), and h(x, y) using the command
\paramPlot3d([[[f], [g], [h]], [x0, x1, y0, y1]), where [x0, x1] — in-
terval on the OX-axis, [y0, y1] — interval on the OY -axis.

Sphere

SPACE=R64[u,v];

\paramPlot3d([[\cos(u)\cos(v)],[\sin(u)\cos(v)],

[\sin(v)]], [-\pi, \pi, -\pi/2, \pi/2]);

Thor

SPACE=R64[u,v];

\paramPlot3d([[\cos(u)(\cos(v)+3)],[\sin(u)(\cos(v)+3)],

[\sin(v)]], [-\pi, \pi, -\pi, \pi]);

Spiral

SPACE=R64[u,v];

\paramPlot3d([[\cos(u)(\cos(v)+3)],[\sin(u)(\cos(v)+3)],

[\sin(v)+u]], [-2\pi, 2\pi, -\pi, \pi]);

Logarithmic spiral

SPACE=R64[u,v];

\paramPlot3d([[u\cos(u)(\cos(v)+1)],[u\sin(u)(\cos(v)+1)],

[u\sin(v)]], [0, 3\pi, -\pi, \pi]);

51

”Seashell”

SPACE=R64[u,v];

\paramPlot3d([[u\cos(u)(\cos(v)+1)],[u\sin(u)(\cos(v)+1)],

[u\sin(v)-(((u+3)/8)\pi)^2-20]], [0, 8\pi, -\pi, \pi]);

Shamrock

SPACE=R64[u,v];

\paramPlot3d([[\cos(u)\cos(v)+3\cos(u)(1.5+\sin(1.5u/2))],

[\sin(u)\cos(v)+3\sin(u)(1.5+\sin(1.5u/2))],

[\sin(v)+2\cos(1.5u)]], [-2\pi, 2\pi, -\pi, \pi]);

Dini surface

SPACE=R64[u,v];

\paramPlot3d([[\cos(u)\sin(v)],[\sin(u)\sin(v)],

[\cos(v)+\lg(\tg(v/2)) +0.2u-4]], [0, 4\pi, 0.0001, 2]);

Tape Mobius

SPACE=R64[u,v];

\paramPlot3d([[(1+v/2\cos(u/2))\cos(u)],[(1+v/2\cos(u/2))\sin(u)],

[v/2\sin(u/2)]], [0, 2\pi, -1, 1]);

Cube

SPACE=R64[u,v];

\paramPlot3d([[u,v,5,u,v,-5],[v,5,u,v,-5,u],[5,u,v,-5,u,v]],

[-5, 5, -5, 5]);

Cylinder

SPACE=R64[u,v];

\paramPlot3d([[5\cos(u)],[5\sin(u)],[v]], [-5, 5, -5, 5]);

Cone

SPACE=R64[u,v];

\paramPlot3d([[\cos(u) * (5 * (1 - v/6))],

[\sin(u) * (5 * (1 - v/6))],[v]], [-6, 6, 0, 6]);

52

Truncated cone

SPACE=R64[u,v];

\paramPlot3d([[\cos(u) * (5 * (1 - v/6) + 1 * v/6)],

[\sin(u) * (5 * (1 - v/6) + 1 * v/6)],[v]], [-5, 5, -5, 5]);

Hourglass

SPACE=R64[u,v];

\paramPlot3d([[\cos(u) * (5 * (0.5 - v/6) + 0.01*v/6)],

[\sin(u) * (5 * (0.5 - v/6) + 0.01*v/6)],[v]], [0, 2\pi, 0, 2\pi]);

Returns:
in: f = x2/20 + y2/20;

plot3d(f, [−20, 20,−20, 20]);
plot3d([x/20 + y2/20, x2/20 + y/20], [−20, 20,−20, 20]);

out: fig. 3.15.

Figure 3.15: Plots 3D of functions

3.2.4. Plotting 3D graphs of functions that are para-
metrically defined. Client-side building

Also, graphs of functions that are defined para-
metrically can be plotted with the command
\parametricPlot3d(f, g, h, uMin, uMax, vMin, vMax, gridSize),

53

where the 3 functions f(u, v), g(u, v) and h(u, v) for the axes OX, OY ,
OZ are specified. The numbers uMin, uMax, vMin, vMax specify the
range for the parameters of functions f, g and h. gridSize is responsible
for the grid size of the box in which the graph is plotted.

You can rotate the coordinate system by moving the mouse pointer
with the left button pressed. You can also shift the origin of the co-
ordinate system by moving the mouse pointer with the right button
pressed.

To plot the graph of a function in time with changing parameters,
you should first specify the number of frames. Then, you should set
the final value of parameters using the sliders. To build the graph, you
should press the ’Plot’ button. The value of the number of frames and
parameters on the sliders can be specified via \set3D().

Parametric thor

SPACE = R64[u, v, a];

X=\cos(u)*(3+\cos(v));

Y=\sin(u)*(3+\cos(v));

Z=a*\sin(v);

\parametricPlot3d(X, Y, Z, 0, 7, 0, 7, 64);

Parametric spiral

SPACE = R64[u, v, b];

X=\cos(u)*(\cos(v)+2);

Y=\sin(u)*(\cos(v)+4b);

Z=\sin(v)+u/2+1;

\parametricPlot3d(X,Y,Z, -6.3, 6.3, -3.15, 3.15, 64);

3.2.5. Ploting of 3D graphs of functions that are de-
fined implicitly

You can build 3D graphs of the functions that are defined implicitly.
To construct the graph of an implicit function f(x, y, z) = 0 use the

command
\implicitPlot3d(f, x0, x1, y0, y1, z0, z1),
where the numbers xMin, xMax, yMin, yMax, zMin, zMax set the

box in the space, which is represented by an implicit function.
You can specify only one function, like this

54

\implicitPlot3d(f)
in this case it is assumed that there will be shows the function f in

the cube 20× 20× 20, which is placed on a center origin.
You can rotate the coordinate system by moving the mouse pointer

while holding down the left button. You can move the coordinate system
by moving the mouse pointer while holding down the right button.

It is possible, optionally, to specify the coordinates of the light
source, the color of the surface and the grid size. The default grid of
50 points on each edge of the box.

The color format RGB (red, green, blue) is given a number
R ∗ 256 ∗ 256 +G ∗ 256 +B,
where each letter denotes a non-negative integer not exceeding 255.

For example, 255 ∗ 256 ∗ 256 — red, and 255 ∗ 256 ∗ 256 + 255∗ 256 —
yellow (red + green).

Allowed, in addition, the following sets of arguments:
(F, xMin, xMax, yMin, yMax, zMin, zMax, gridSize),
(F, xMin, xMax, yMin, yMax, zMin, zMax, lightX, lightY, lightZ, gridSize),
(F, xMin, xMax, yMin, yMax, zMin, zMax, lightX, lightY, lightZ, color, gridSize).
To plot the graph of a function in time with changing parameters,

you should first specify the number of frames. Then, you should set
the final value of parameters using the sliders. To build the graph, you
should press the ’Plot’ button. The value of the number of frames and
parameters on the sliders can be specified via \set3D().

Example.

SPACE = R64[x, y, z];

f = -x^2+2y^2+3z^2-25;

\implicitPlot3d(f, -10, 10, -10, 10, -10, 10);

Hyperboloid

SPACE = R64[x, y, z];

\implicitPlot3d(x^2+ y^2+ z^2-25 , -7, 7, -7, 7, -7, 7,

10, 10, 10, 255*256*256, 100);

Red sphere.

SPACE = R64[x, y, z];

f = \sin(xyz/100) ;

\implicitPlot3d(f , -9,9,-9,9,-9,9, 10,10, 4, 255*256*256+255*256, 50);

55

Yellow surface with a central symmetry.

SPACE = R64[x, y, z];

f = ((x+2)^2+ (y-2)^2 -1)((x-2)^2+ (y+2)^2 -1)((x+2)^2+

(y+2)^2 -1) ((x-2)^2+ (y-2)^2 -1)(x^2+ y^2 -1);

\implicitPlot3d(f, -10, 10, -10, 10, -10, 10);

Organ pipes.

3.2.6. Plot different 3D graphs of functions in one
coordinate system

To plot the graphs of functions defined in different ways, you need to ex-
ecute the command \showPlots3D(f, g), where f and g are commands
for building other graphs of a function.

You can set the environment parameters with \set3D().
You can rotate the coordinate system by moving the mouse pointer

with the left button pressed. You can also shift the origin of the co-
ordinate system by moving the mouse pointer with the right button
pressed.

To plot the graph of a function in time with changing parameters,
you should first specify the number of frames. Then, you should set
the final value of parameters using the sliders. To build the graph, you
should press the ’Plot’ button. The value of the number of frames and
parameters on the sliders can be specified via \set3D().

SPACE = R64[x, y, z];

\set3D(-5,5,-5,5,-10,10,40);

f = -x^2+2y^2+3z^2-25;

g = (x^2+y^2)/20;

\showPlots3D(\implicitPlot3d(f), \explicitPlot3d(g));

3.3. Geometry

\paintElement′operator1; operator2; ...operatork;′, is a drawing
tool for school geometry.

Operators are defined like this:
operator (arg 1 : type 1, ..arg n : typen = default): returnType

56

arg 1, ..arg n - list of operator arguments.
type 1, ..type n - types of arguments, strings or numbers, or other
object.
= default is the value to use if no argument is given.
returnType is the type of the returned object.

Operators can have an additional label argument: string, which
defines the signature of the figure, and the requirement to display in
the figure:
� label not set - the shape is used as an intermediate shape and is NOT
drawn.
� label = % % - the figure is drawn, but without a caption.
� label =% text% - the shape is labeled with text.

Figure signature: operator (arg 1, .. arg n) .display (% text%);

Lines are delimited by percent signs, not quotation marks as in mfth-
par.

3.3.1. Example (draw circle)

Circle (radius: r1, center: Point = Point (x1, y1)).
You can use different methods of creating a circle:
� Circle (r1, Point (x1, y1));
� Circle (r1); - the center will automatically be at x1 = 0, y1 = 0.
� R = r1; P = Point (x1, y1) .display (“% O1%); C = Circle (R, P);

3.3.2. Operators

Point (x: number1, y: number2) is the point constructor.
� x, y - point position.

\paintElement (’a = Point (1, 1) .display (\% A\%);’);

Line (point1: Point, point2: Point) - line constructor.
� point1, point2 - line points. The order doesn’t matter.

\paintElement (’l=Line(Point(1,1),Point(2,2)).display(% L%); ’);

57

Polygon (point1, point2, ..., pointN: Point []) - a polygon constructor,
a figure that is a list of points connected by line segments. The last point
is connected to the first.
� point1, point2, ..., pointN - Polygon vertices. The length of the vertex
list is not limited.

\paintElement (pl=Polygon(Point(1,1),Point(3,3),Point(0,2)).display(); ’);

Rectangle (width: number1, height: number2, bottomLeft: Point =
Point (1, 1)) - the constructor of the horizontal rectangle.
� width - the width of the rectangle.
� height - the height of the rectangle.
� bottomLeft - bottom left point of the rectangle.

\paintElement (pl = Rectangle (1, 2, Point (4,0)). display (); ’);

Square (size: number, bottomLeft: Point = Point (x1, y1)) - square
constructor.
� size - the length of the side of the square.
� bottomLeft - bottom left point of the square.

begin verbatim paintElement (pl = Square (2, Point (4,0)). display
(); ’);

Triangle (point1: Point, point2: Point, point3: Point) - three-point
triangle constructor. The order doesn’t matter.
� point1, point2, point3 - triangle points.

\paintElement (pl=Triangle(Point(1,1),Point(3,3),

Point(0,2)).display (); ’);

Circle (radius: number1, center: Point = Point (x1, y1)) is the circle
constructor.
� radius - radius of the circle.
� center - the center of the circle.

\paintElement (’c = Circle (3) .display ();’);

58

Ellipse (width: number1, height: number2, center: Point = Point
(x1, y1)) - ellipse constructor.
� width - horizontal semiaxis of the ellipse.
� height - vertical semiaxis of the ellipse.
� center - the center of the ellipse.

\paintElement (’a = Ellipse (2, 3) .display ();’);

normal (point: Point1, line: Line1): Point - draw a perpendicular
from point to line. Returns the intersection point of a perpendicular
and a line.
� point - the point from which the perpendicular is restored.
� line - a straight line to which the perpendicular is restored.

\paintElement (’a=Point(1, 1).display(% A%); l=Line(Point(1,3),

Point(3,1)). display(% L%); n=normal(a,l).display(% N%); ’);

median (point: Point, line: Line): Point - build a median from point
to section. Returns the midpoint of a line segment.
� point - the point from which to build the median.
� line - the segment on which the median is based.

\paintElement(’a =Point(1, 1).display(% A%);l=Line(Point(1,3),

Point(3,1)).display (% L%); m=median(a, l).display(% M%); ’);

Text (text:% string1%, leftBottom: Point1, fontSize: number = 10)
- write text starting at a certain point. � text - the actual text.
� leftBottom - bottom left (starting) point of the text.
� fontSize - text font size.

\paintElement (’a =Text(% This is text%,

Point(1,1)).display(); ’);

middle (line: Line): Point - find the midpoint of the line segment.
� line - the segment whose middle you want to find.

59

\paintElement (l=Line(Point(1,3),Point(3,1)).display(% L%);

m=middle (l) .display(% m%); ’);

incircle (triangle: Triangle): Circle - draw a circle inscribed in the
tracker.
� triangle - a triangle into which the circle should be inscribed

\paintElement (tr=Triangle(Point(1,3),Point(3,1),

Point(1,1)).display();c = incircle(tr).display (); ’);

Circumcircle (triangle: Triangle): Circle - draw a circle around the
triangle. � triangle - a triangle around which you want to describe a
circle

\paintElement (tr=Triangle(Point(1,3),Point(3,1),

Point(1,1)).display();c = circumcircle(tr).display(); ’);

lineCircleCross (line: Line, circle: Circle): Point [] - find and return
points of intersection of a line and a circle.
� line - a line that can cross the circle.
� circle - a circle that can cross the line.

\paintElement(’l= Line(Point(1,3),Point(3,1)).display(% L%);

c=Circle(3) .display(); p=lineCircleCross(l,c); ’);

circlesCross (circle1: Circle, circle2: Circle): Point [] - find and return
points of intersection of two circles.
� circle1, circle2 - circles that can be crossed.

\paintElement(’c1=Circle(2).display();c2=Circle(3,Point(2,2)).display();

p=circleCross(c1,c2);’);

60

Chapter 4

Environment for
mathematical objects

4.1. Setting of environment

The definition of any mathematical object, a number or function,
a matrix or symbol, involves the definition of some environment, that
is, the space which contains this object. To select the environment you
have to set the algebraic structure. This algebraic structure is defined
by numeric sets, algebraic operations in these sets and variable names.

First of all any user have to set an environment in Mathpar.

By default, a space of the four real variables R64[x, y, z, t] is defined.
This is ring of polynomials with coefficients in the ring of real numbers,
the youngest is the variable x, the eldest is the variable t.

User can change the environment, setting a new algebraic structure.

For example the spaces R64[x] or Q[x] may be suitable to solve
many problems of computational mathematics. The installation com-
mand should be the follow: ¡¡SPACE=R64[x];¿¿ or ¡¡SPACE=Q[x];¿¿.

Moving a mathematical object from the previous environment to the
current environment, as a rule, should be performed explicitly, using
the toNewRing() function. In some cases, such a transformation to the
current environment is automatic.

All other names which are not listed as a variables can be chosen
arbitrarily by the user for any mathematical object.

61

For example

a = x+ 1, f = \\sin(x+ y)− a.

We follow the rule. If the object name begins with the symbol \ and
a capital letter such object is an element of a noncommutative algebra,
else object is an element of a commutative algebra.

4.2. Numerical sets with standard opera-
tions

Current version of the system supports the following numerical sets
with standard operations.

Z — the set of integers Z,
Zp — a finite field Z/pZ where p is a prime number,

Zp32 — a finite field Z/pZ where p is less 231,

Z64 — the ring of integer numbers z such that −263 ⩽ z < 263,

Q — the set of rational numbers,

R — the set of floating point numbers to store the approximate real
numbers with arbitrary mantissa,

R64 — standard floating-point 64-bit numbers (52 digits for man-
tissa, 11 bits for the order and 1 bit for the sign),

R128 — standard floating-point 64-bit numbers, equipped with op-
tional 64-bit for the order,

C — complexification of R,

C64 — complexification of R64,

C128 — complexification of R128,

CZ — complexification of of Z,

CZp — complexification of Zp,

CZp32 — complexification of Zp32,

CZ64 — complexification of Z64,

CQ — complexification of Q.

Examples of simple commutative polynomial rings:

SPACE = Z [x, y, z];

SPACE = R64 [u, v];

SPACE = C [x].

62

4.3. Several numerical sets

The ring Z[x, y, z]Z[u, v, w], which has two subsets of variables, is the
polynomial ring with variables u, v, w with coefficients in the polynomial
ring Z[x, y, z].

For example, the characteristic polynomial of a matrix over the ring
Z[x, y, z] may be obtained as a polynomial with the variable u, whose
coefficients are polynomials in the ring Z[x, y, z].

You can set algebraic space which defines several numerical sets. For
example, the space C[z]R[x, y]Z[n, m] allows to have the five names of
variables, which defined in the sets C, R and Z, respectively. The first
set is the main.

C[z]R[x, y]Z[n,m] can be viewed as a polynomial ring of five vari-
ables over C, which has the additional properties. If the polynomial does
not contain the variables z, x, y, then it is a polynomial with coefficients
in the set Z. If the polynomial does not contain the variable z, then it
is a polynomial with coefficients in the set R.

Examples:
SPACE=Z[x, y]Z[u];
SPACE=R64[u, v]Z[a, b];
SPACE=C[x]R[y, z];

4.4. Idempotent algebra and tropical
mathematics

User can uses the idempotent algebras. In this case the signs of
”addition” and ”multiplication” for the infix operations can be used for
operations in tropical algebra: min, max, addition, multiplication.

Each numerical sets R, R64, Z has two additional elements ∞ and
−∞, and they have different elements, which is play the role of zero
and unit. We denote these sets R̂, R̂64, Ẑ, correspondingly. The name
of tropical algebra is obtained from three words: (1) a numerical set, (2)
an operation, which corresponding to the sign plus and (3) an operation,
which corresponding to the sign times.

The algebras R64MaxPlus, R64MinPlus, R64MaxMin,
R64MinMax, R64MaxMult, R64MinMult are defined for the
numerical set R̂64.

63

RMaxPlus, RMinPlus, RMaxMin, R64MinMax, RMaxMult, RMin-
Mult are defined for the numerical set R̂.

ZMaxPlus, ZMinPlus, ZMaxMin, ZMinMax, ZMaxMult, ZMinMult
are defined for the numerical set Ẑ.

For example, for the algebra ZMaxPlus you can do the following
operations.

Example.

SPACE=ZMaxPlus[x, y];

a=2; b=9+x; c=a+b; d=a b+y; \print(c, d)

The results: c = x+ 9; d = y + 2x+ 11.
For each algebra we defined elements 0 and 1, −∞ and ∞. For each

element a we defined the operation of closure: a×, i.e. the amount of
1+a+a2+a3+ For the classical algebras this operation is equivalent
to (1− a)−1.

4.5. Constants

It is possible to set or replace the following constants.
FLOATPOS — an amount of decimal positions of the real number

of type R or R64, which you can see in the printed form of this number
(the default value is 2).

MachineEpsilonR — machine epsilon for the number of type R and
C (10−29 is the default value). The number whose absolute value is less
than 10−29, is considered to be a machine zero. To set the new value of
10−30, enter the command ¡¡ MachineEpsilonR64 = 30 ¿¿.

MachineEpsilonR64 — machine epsilon for the number of type R64
and C64 (2−36 is the default value). The number whose absolute value
is less than 2−36, is considered to be a machine zero. To set the new
value of 2−48, enter the command ¡¡ MachineEpsilonR64 = 48 ¿¿.

Constant MachineEpsilonR (and MachineEpsilonR64) used in fac-
toring polynomials with coefficient of type R (or R64). Each coeffi-
cient of the polynomial is divided by the number MachineEpsilonR
(or MachineEpsilonR64) and rounded to integer value.

MOD32 — — the module for a finite field of the type Zp32, its value
is not greater than 231. (the default value is 268435399).

MOD — the module for a finite field of the type Z (the default value
is 268 435 399).

64

RADIAN — (1/0) is a flag, which indicates that angles are measured
in radians (default is 1: active).

STEPBYSTEP — (1/0) is a flag, which indicates that you want to
display intermediate results (default is 0: turned off).

EXPAND — (1/0) is a flag, which indicates that in the input ex-
pression all brackets must be disclosed (the default is 1: active).

SUBSTITUTION — (1/0) is a flag, which indicates that the names
in the input expression must be substituted of their meaning, if they
have been defined before (the default is 1: active).

The constant ACCURACY is an amount of exact decimal positions
in the fractional part of a real numbers of type R and C in the result of
multiplication or division operation (the default value is 34).If ACCU-
RACY = 100, then the result of arithmetic operation will be rounded
to the one hundredth decimal place. Obviously, the inequality ACCU-
RACY > MachineEpsilonR must hold.

To install the MachineEpsilonR 1/109 (i.e. 1E − 9) enter the com-
mand MachineEpsilonR = 9 . After that, any number a ∈ R, will be
considered as zero if |a| < 10−9. The value ACCURACY will be set Ma-
chineEpsilonR+5; If you like another value of ACCURACY you can set
the fraction ¡¡MachineEpsilonR=35/49¿¿. In this case you obtain result:
MachineEpsilonR=35 and ACCURACY=49.

For the numbers a ∈ R64, a ∈ R128, a ∈ C64, a ∈ C128, there is no
constant defining binary places. Arithmetic instructions are used with
accuracy that equals 2.22044604925031308e-16. However, you can set
the number of binary places for MachineEpsilonR64: for example, you
can set MachineEpsilonR64=10.

Prime number MOD32 is a characteristic of a finite field. The con-
stant MOD32 is used when calculations are made in a finite field Zp32
and it should be less 231.

The prime number MOD is also characteristic of the finite field, but
it has no restrictions on the absolute value. The constant MOD is used
when calculations are made in a finite field Zp.

The constant FLOATPOS determines the number of decimal places,
are printed. In addition, it is used in the factorization of polynomi-
als whose coefficients are an approximate numbers of type R or R64.
Each coefficient of this polynomial is pre-multiplied by the number of
10MachineEpsilonR or and rounded to an integer value. But after factor-
ing polynomial extra factor is removed.

65

SPACE=Zp32[x, y];

MOD32=7;

f1=37x+42y+55;

f2=2f1;

\print(f1, f2);

66

Chapter 5

Functions of one and
several variables

5.1. Mathematical functions

The following notations for elementary functions and constants are
accepted.

5.1.1. Constants

\i — imaginary unit,
\e — the basis of natural logarithm,
\pi — the ratio of length of a circle to its diameter,
\infty – infinity symbol.

5.1.2. Functions of one argument

\ln — natural logarithm,
\lg — decimal logarithm,
\sin — sine,
\cos — cosine,
\tg — tangent,
\ctg — cotangent,
\arcsin — arcsine,
\arccos — arccosine,

67

\arctg — arctangent,
\arcctg — arccotangent,
\sh — sine hyperbolic,
\ch — cosine hyperbolic,
\th — tangent hyperbolic,
\cth — cotangent hyperbolic,
\arcsh — arcsine hyperbolic,
\arcch — arccosine hyperbolic,
\arcth — arctangent hyperbolic,
\arccth — arccotangent hyperbolic,
\exp — exponent,
\sqrt — root square,
\abs — absolute value of real numbers (module for complex num-

bers),
\sign — number sign (returns 1, 0, −1 when number sign is +, 0,

−, correspondingly),
\unitStep(x) — is a function that for x > 0 takes the value 1, and

for x < 0 takes the value 0;
\fact — factorial. It is defined for positive integers and equivalent

to n!.

5.1.3. Functions of two arguments

ˆ — degree,
\log — logarithm of function with given base,
\rootOf(x, n) — root of degree n of x,
\Gamma — the function Gamma,
\Gamma2 — the function Gamma 2,
\binomial — binomial coefficient.

Examples.

SPACE = R64[x, y];

f1 = \sin(x);

f2 = \sin(\cos(x + \tg(y)));

f3 = \sin(x^2) + y;

\print(f1, f2, f3);

The results:
f1 = sin(x);

68

f2 = sin(cos(x+ tg(y)));
f3 = sin(x2) + y.

5.2. Calculation of the value of a function
in a point

To calculate the value of a function in a point execute the com-
mand \value(f, [var1, var2, . . . , varn]), where f is a function, and
var1, var2, . . . , varn are values of variables, which are substituted in-
stead of corresponding variables.

You can use radians or degrees for an angular measure. For an in-
dication of angular measure, you can set the constant RADIAN. If you
do not specify the angular measure, the radians is chosen. To change
the angular measure from radians to degrees, run RADIAN = 0. If you
need to change the angular measure in radians, then run RADIAN = 1.

If the arguments of trigonometric functions is integer, which is equal
to 15k or 18k degrees (i.e. πk/12 and πk/10 radians, k ∈ Z), then values
of the trigonometric functions are algebraic numbers.

Examples.

SPACE = R[x, y];

f = \sin(x^2 + \tg(y^3 + x));

g = \value(f, [1, 2]);

\print(g);

Returns:
in: SPACE = R[x, y];

f = sin(x2 + tg(y3 + x));
g = value(f, [1, 2]); print(g);

out: g = 0.52;

SPACE = Z[x];

RADIAN = 0;

f = \sin(x);

g = \value(f, 15);

\print(g);

Returns:
in: SPACE = Z[x];

69

RADIAN = 0;
f = sin(x);
g = value(f, 15);
print(g);

out: g = (
√
6− (

√
2))/(4);

SPACE = Z[x];

RADIAN = 0;

f = \sin(x);

g = \value(f, 225);

\print(g);

Returns:
g = (−1 ·

√
2)/(2);

SPACE = Z[x];

RADIAN = 0;

f = \cos(x);

g = \value(f, 54);

\print(g);

Returns:

g =
√
(5−

√
5)/(8);

SPACE = Z[x];

RADIAN = 0;

f = \tg(x);

g = \value(f, 126);

\print(g);

Returns:

g = (−1 ·
√
(1 + 2 ·

√
5/(5)));

SPACE = Z[x];

RADIAN = 0;

f = \sin(x);

g = \value(f, 216);

\print(g);

Returns:

g = (−1 ·
√

(5−
√
5)/(8));

70

SPACE = Z[x];

RADIAN = 0;

f = \cos(x);

g = \value(f, 108);

\print(g);

Returns:
g = (1−

√
5)/(4).

5.3. Substitution of functions instead of
ring variables

To calculate the composition of functions some functions must
be substituted in place of the arguments. For this you must run
\value(f, [func1, func2,. . . , funcn]) , where f — this function,
func1, func2, . . . , funcn — functions that are substituted into the
corresponding places.

Example.

SPACE = Z[x, y];

f = x + y;

g = f^2;

r = \value(g, [x^2, y^2]);

\print(r);

Returns:
in: g = y2 + 2yx+ x2;

f = y + x;
out: r = y4 + 2y2x2 + x4.

5.4. Calculation of the limit of a function

To calculate the limit of a function at a point you must run
\lim(f, var), where f — this function, and var — point, possi-
bly infinite, in which you want to find the limit. The limit may not
exist, may be finite or infinite.

Examples.

71

SPACE = R64[x];

f = \sin(x) / x;

g = \lim(f, 0);

\print(g);

Returns:
in: SPACE = R64[x];

f = sin(x)/x;
g = lim(f, 0);
print(g);

out: g = 1.00;

SPACE = R64[x];

f = (x^2 - 2x + 2) / (x^2 + x - 2);

g = \lim(f, 1);

\print(g);

Results:
Returns:
in: SPACE = R64[x];

f = (x2 − 2x+ 2)/(x2 + x− 2);
g = lim(f, 1);
print(g);

out: g = ∞;

SPACE = R64[x];

f = \sin(x + 3) / (x^2 + 6x + 9);

g = \lim(f, -3);

\print(g);

Results:
Returns:
in: SPACE = R64[x];

f = sin(x+ 3)/(x2 + 6x+ 9);
g = lim(f,−3);
print(g);

out: g = ∞;

SPACE = R64[x];

f = (1 + 1 / x)^x;

g = \lim(f, \infty);

\print(g);

72

Results:
Returns:
in: SPACE = R64[x];

f = (1 + 1/x)x;
g = lim(f,∞);
print(g);

out: g = 2.72.

5.5. Differentiation of functions

To differentiate a function f(x, y, z) with lowest variable x, you have
to execute one of commands \D(f), \D(f, x) or \D(f, x ̂ 1). To fine
the second derivative of f(x, y, z) by variable y, you have to execute the
command \D(f, y ̂ 2). And so on.

To find a mixed first-order derivative of the function f there is a
command \D(f, [x, y]), to find the derivative of higher order to use the
command \D(f, [x ̂ k, z ̂m, y ̂n]), where k,m, n indicate the order of
the derivative.

Examples.
SPACE = Z[x, y];

f = \sin(x^2 + \tg(y^3 + x));

h = \D(f, y);

\print(h);

Returns:
in: SPACE = Z[x, y];

f = sin(x2 + tg(y3 + x));
h = D(f, y);
print(h);

out: h = 3y2cos(x2 + tg(y3 + x))/(cos(y3 + x))2;

SPACE = Z[x, y];

f = \sin(x^2 + \tg(y^3 + x));

h = \D(f);

\print(h);

Returns:
in: SPACE = Z[x, y];

f = sin(x2 + tg(y3 + x));
h = D(f);

73

print(h);
out: h = (2x cos(x2 + tg(y3 + x))(cos(y3 + x))2 + cos(x2 + tg(y3 +
x)))/(cos(y3 + x))2;

SPACE = Z[x, y, z];

f = x^8y^4z^9;

g = \D(f, [x^2, y^2, z^2]);

\print(g);

Returns:
in: SPACE = Z[x, y, z];

f = x8y4z9;
g = D(f, [x2, y2, z2]);
print(g);

out: g = 48384z7y2x6.

5.6. Integration of the compositions of ele-
mentary functions

Symbolic integration of compositions of elementary functions is per-
formed by using the \int(f(x))dx.

Examples.

SPACE = Z[x, y, z];

l1 = \int(x^6yz + 3x^2y - 2z) d x;

dl1 = \D(l1,x);

l2 = \int(x^6yz + 3x^2y - 2z) d y;

dl2 = \D(l2,y);

l3 = \int(x^6yz + 3x^2y - 2z) d z;

dl3 = \D(l3,z);

\print(l1, dl1,l2, dl2,l3, dl3);

Returns:
in: SPACE = Z[x, y, z];

l1 =
∫
(x6yz + 3x2y − 2z)dx;

dl1 = D(l1, x);
l2 =

∫
(x6yz + 3x2y − 2z)dy;

dl2 = D(l2, y);
l3 =

∫
(x6yz + 3x2y − 2z)dz;

74

dl3 = D(l3, z);
print(l1, dl1, l2, dl2, l3, dl3);

out: l1 = (1/7)zyx7 − 2zx+ yx3;
dl1 = x6yz + 3x2y − 2z. l2 = (1/2)zy2x6 − 2zy + (3/2)y2x2;
dl2 = x6yz + 3x2y − 2z. l3 = (1/2)z2yx6 − z2 + 3zyx2;
dl3 = x6yz + 3x2y − 2z.

SPACE = R[x];

l = \int(1/(x^2-5x+6)) d x;

dl = \D(l,x);

\print(l, dl);

Returns:
in: SPACE = Q[x, y, z];

l =
∫
(1/(x2 − 5x+ 6))dx;

dl = D(l, x);
print(l, dl);

out: l = (ln(x− 3)− ln(x− 2));
dl = (1/(x− 3)− 1/(x− 2)).

SPACE = Q[x];

l = \int(\exp(x)+\exp(-x)) d x;

dl = \D(l,x);

\print(l, dl);

Returns:
in: SPACE = Q[x, y, z];

l =
∫
(exp(x) + exp(−x))dx;

dl = D(l, x);
print(l, dl);

out: l = (exp(x)− ((exp(x))−1));
dl = (exp(x) + exp(−x)).

SPACE = Q[x];

l = \int(x*\exp(x^2)) d x;

dl = \D(l,x);

\print(l, dl);

Returns:
in: SPACE = Q[x, y, z];

l =
∫
(x ∗ exp(x2))dx;

dl = D(l, x);

75

print(l, dl);
out: l = (exp(x2)/2);

dl = (x ∗ exp(x2)).

SPACE = Q[x];

l = \int((x*\ln(x)*\exp(x)+\exp(x))/x) d x;

dl = \D(l,x);

\print(l, dl);

Returns:
in: SPACE = Q[x, y, z];

l =
∫
((x ∗ ln(x) ∗ exp(x) + exp(x))/x)dx;

dl = D(l, x);
print(l, dl);

out: l = (ln(x) ∗ exp(x));
dl = ((x ∗ ln(x) ∗ exp(x) + exp(x))/x).

SPACE = R64[x];

l = \int((\ln(x+3)+\ln(x+2)+\ln(x+1))) d x;

dl = \D(l,x);

\print(l, dl);

Returns:
in: SPACE = R64[x, y, z];

l =
∫
((ln(x+ 3) + ln(x+ 2) + ln(x+ 1)))dx;

dl = D(l, x);
print(l, dl);

out: l = (((x ∗ ln(x+3)+ 3.00 ∗ ln(x+3)+ x ∗ ln(x+2)+ 2.00 ∗ ln(x+
2) + x ∗ ln(x+ 1) + ln(x+ 1))− 3x));

dl = ((ln(x+ 3) + ln(x+ 2) + ln(x+ 1))).

SPACE = Q[x];

l = \int((2x^2+1)^3) d x;

dl = \D(l,x);

m=\factor(dl);

\print(l, m);

Returns:
in: SPACE = Q[x, y, z];

l =
∫
((2x2 + 1)3)dx;

dl = D(l, x);
m = factor(dl);

76

print(l,m);
out: l = (8/7)x7 + (12/5)x5 + 2x3 + x;

m = (2x2 + 1)3.

5.7. Simplification of compositions

For transformation of a trigonometric and logarithmic function by
means of identities:
sin(x)cos(y)± cos(x)sin(y) = sin(x± y)
cos(x)cos(y)± sin(x)sin(y) = cos(x∓ y)
sin2(x) + cos2(x) = 1
cos2(x)− sin2(x) = cos(2x)
ln(a) + ln(b) = ln(ab)

ln(a)− ln(b) = ln(
a

b
)

the command \Expand(f(x)) is used.

Examples.

SPACE=Q[x, y, z];

g=\ln(x^2*4x);

f=\Expand(g);

\print(f);
Returns:

in: SPACE = Q[x, y, z];
g = ln(x2 ∗ 4x);
f = Expand(g);
print(f);

out: f = ln(x2) + ln(4x);

SPACE=Q[x, y, z];

g=\sin(x^2+4x+2\pi);

f=\Expand(g);

\print(f);
Returns:

in: SPACE = Q[x, y, z];
g = sin(x2 + 4x+ 2π);
f = Expand(g);
print(f);

out: f = (sin(x2) ∗ (cos(4x) ∗ cos(2) − sin(4x) ∗ sin(2)) + cos(x2) ∗
(sin(4x) ∗ cos(2) + cos(4x) ∗ sin(2)));

77

SPACE=Q[x, y, z];

g=\cos(\sin(x)+\cos(y));

f=\Expand(g);

\print(f);

Returns:
in: SPACE = Q[x, y, z];

g = cos(sin(x) + cos(y));
f = Expand(g);
print(f);

out: f = (cos(cos(y)) ∗ cos(sin(x))− sin(cos(y)) ∗ sin(sin(x)));
For simplification of a trigonometric and logarithmic function by

means of all formulas mentioned above and formulas: ln(a)k = k · ln(a)
eiz + e−iz = 2Cos(z)
eiz − e−iz = 2iSin(z)
Ln(1 + iz)− Ln(1− iz) = 2i ∗ arctg(z)
Ln(1− iz)− Ln(1 + iz) = 2i ∗ arcctg(z)
ez + e−z = 2Ch(z)
ez − e−z = 2iSh(z)
the command \Factor(f(x)) is used.

Examples.

SPACE=Q[x, y, z];

g=\log_{2}(x)+\log_{2}(y)-\log_{2}(xz)+\lg(y)+\lg(y)-\lg(z);

f=\Factor(g);

\print(f);

Returns:
in: SPACE = Q[x, y, z];

g = log2(x) + log2(y)− log2(xz) + lg(y) + lg(y)− lg(z);
f = Factor(g);
print(f);

out: f = lg(y2/z) + log2(y/z);

SPACE=Q[x, y, z];

g=16\sin(x/48)\cos(x/48)\cos(x/24)\cos(x/12)\cos(x/6);

f=\Factor(g);

\print(f);

Returns:
in: SPACE = Q[x, y, z];

78

g = 16 sin(x
48) cos(

x
48) cos(

x
24) cos(

x
12) cos(

x
6);

f = Factor(g);
print(f);

out: f = sin(0.33x);

SPACE=C64[x, y, z];

g=\ln(1-\ix) - \ln(1+\ix) + \exp(\ix) - 2\exp(-\ix) + \sin(x)^2 - \cos(x)^2;

f=\Factor(g);

\print(f);

Returns:
in: SPACE = C64[x, y, z];

g = ln(1− ix)− ln(1+ ix)+exp(ix)−2 exp(−ix)+sin(x)2− cos(x)2;
f = Factor(g);
print(f);

out: f = (−1.00 ∗ cos(2x)) + 2.00i ∗ (sin(x)) + (−1.00 ∗ exp(−ix)) +
(2.00i ∗ (arcctg(x)));

Unit of commands \Factor(f(x)) and \Expand(f(x)) allows to
solve more difficult examples:

SPACE=R64[x, y, z];

g=(\sin(x+y) + \sin(x-y))\cos(x) + (\sin(x+y) + \sin(x-y))\sin(y);

f=\Expand(g);

u=\Factor(f);

\print(f,u);

Returns:
in: SPACE = R64[x, y, z];

g = (sin(x+ y) + sin(x− y)) cos(x) + (sin(x+ y) + sin(x− y)) sin(y);
f = Expand(g);
u = Factor(g);
print(f, u);

out: f = 2.00 ∗ cos(y) ∗ sin(x) ∗ cos(x)+ 2.00 ∗ sin(y) ∗ cos(y) ∗ sin(x);
u = sin(x) ∗ sin(2.00y) + cos(y) ∗ sin(2.00x);

5.8. Arithmetic-geometric mean

Given two non-negative numbers x and y, one can define their
arithmetic, geometric and harmonic means as x+y

2 ,
√
xy, and 2xy

x+y ,

respectively. Moreover, \AGM(x, y) denotes the arithmetic-geometric

79

mean of x and y. \GHM(x, y) denotes the geometric-harmonic mean
of x and y. At last, \MAGM(x, y) denotes the modified arithmetic-
geometric mean of x and y. Every mean is a symmetric homogeneous
function in their two variables x and y. In contrast to well-known means,
\AGM(x, y), \GHM(x, y), and \MAGM(x, y) are calculated itera-
tively.

The arithmetic-geometric mean \AGM(x, y) is equal to the limit of
both sequences xn and yn, where x0 = x, y0 = y, xn+1 = 1

2 (xn + yn),
and yn+1 =

√
xnyn.

In the same way, the geometric-harmonic mean \GHM(x, y) is equal
to the limit of both sequences xn and yn, where x0 = x, y0 = y, xn+1 =√
xnyn, and yn+1 = 2xnyn

xn+yn
.

The modified arithmetic-geometric mean \MAGM(x, y) is equal
to the limit of the sequence xn, where x0 = x, y0 = y, z0 = 0,
xn+1 = xn+yn

2 , yn+1 = zn +
√
(xn − zn)(yn − zn), and zn+1 = zn −√

(xn − zn)(yn − zn).
Examples.

SPACE=R64[];

FLOATPOS=5;

agm=\AGM(1,5);

ghm=\GHM(1,5);

p=agm*ghm;

magm=\MAGM(1,5);

\print(agm, ghm, p, magm);

Results:

agm = 2.60401

ghm = 1.92012

p = 5

magm = 2.61051

5.9. The complete elliptic integrals of the
first and second kind

Let us use the parameter 0 ≤ k ≤ 1.

80

The complete elliptic integral of the first kind K(k) is defined as

K(k) =

∫ 1

0

dt√
(1− t2)(1− k2t2)

It can be computed in terms of the arithmetic-geometric mean:

K(k) =
π

2AGM(1,
√
1− k2)

On the other hand, for k < 1, it can be computed in terms of the
geometric-harmonic mean:

K(k) =
π

2
GHM(1,

1√
1− k2

)

The complete elliptic integral of the second kind E(k) is defined as

E(k) =

∫ 1

0

√
1− k2t2

1− t2
dt

It can be computed in terms of the modified arithmetic-geometric mean:

E(k) = K(k)MAGM(1, 1− k2)

See also: S. Adlaj (2012) An eloquent formula for the perimeter of an
ellipse. Notices of the American Mathematical Society. 59(8), 1094-1099.
DOI:10.1090/noti879

5.10. The period of a simple gravity pen-
dulum

A point mass suspended from a pivot with a massless cord. The
length of the pendulum equals L = 1 metre. It swings under gravita-
tional acceleration g = 9.80665 metres per second squared. The max-
imum angle that the pendulum swings away from vertical, called the
amplitude, equals θ0 = 2.0944, that is, 2

3π radians.
Find the period T of the pendulum using the arithmetic-geometric

mean

T =
2π

AGM(1, cos(θ0/2))

√
L

g

81

SPACE = R64[];

FLOATPOS = 4;

\theta_0=2.0944;

w=\cos(\theta_0/2);

Ts = 2*\pi*\sqrt{L/g}/\AGM(1,w);

\print(Ts);

L = 1; g = 9.80665;

T=\value(Ts); \print(T);

Results:
Ts = 2.7458 ∗ π ∗ (L/g)(1/2)
T = 2.7546

82

Chapter 6

Series

A series given in the form f=\sum {i=k} {̂ \infty} F (i, x, y, . . . , z),
where i — summation index, k — initial value of i, F (i, x, y, . . . , z) —
a function of many variables, which may depend on i.

There are defined the following arithmetic operations with series:
addition, subtraction, multiplication.

Let f and g are series.
To add two series to execute the \seriesAdd(f, g).
To calculate the difference between two series should run the com-

mand \seriesSubtract(f, g).
For multiplication of two series should run the command

\seriesMultiply(f, g).
For the expansion of a function in a Taylor series with a certain

number of members, you must run \teilor(f, point, num), where f —
function, point — point, num — a number of members of the series.
Examples.

SPACE=R[x, y];

f=\sum_{i=2}^{\infty} (2x^i y b i);

g=\sum_{i=4}^{\infty} (x^i a\sin(a i x));

h=\seriesAdd(f, g);

\print(f, g, h);

Results:

f =

∞∑
i=2

2(x)iybi;

83

g =

∞∑
i=4

(x)ia sin(aix);

h =

∞∑
i=4

(2(x)iybi+ (x)ia sin(aix)) +

3∑
i=2

(2xiybi);

SPACE=R[x, y];

f=\sum_{i=1}^{\infty} (x^i y i\cos(b));

g=\sum_{i=2}^{\infty} (5x^i a\cos(a x i));

h=\seriesSubtract(f, g);

\print(f, g, h);

Results:

f =

∞∑
i=1

(x)iyi cos(b);

g =

∞∑
i=2

5(x)ia cos(axi);

h =

∞∑
i=2

((x)iyi cos(b)− 5(x)ia cos(axi)) + xy cos(b);

SPACE=R[x, y];

f=\sum_{i=0}^{\infty} (2x^i y b i);

g=\sum_{i=2}^{\infty} (5y^i x^2 b i\cos(a_1 x));

h=\seriesSubtract(f, g);

\print(f, g, h);

Results:

f =

∞∑
i=0

2(x)iybi;

g =

∞∑
i=2

5yix2bi cos(a1x);

h =

∞∑
i=2

(2xiybi− 5yix2bi cos(a1 ∗ x)) +
1∑

i=0

(2xiybi);

84

SPACE=R[x, y]; \clean();

f=\sum_{a=6}^{\infty} (x^a a_0);

g=\sum_{a=9}^{\infty} (6x^a\cos(a_1 x));

h=\seriesMultiply(f, g);

\print(f, g, h);

Results:

f =

∞∑
a=6

(x)a ∗ a0;

g =

∞∑
a=9

6 ∗ (x)a ∗ cos(a1 ∗ x);

h =

∞∑
a2=6

∞∑
a=9

(x)a2 ∗ a0 ∗ 6 ∗ (x)a ∗ cos(a1 ∗ x);

SPACE=R[x, y];

f=\sum_{a=6}^{\infty} (y^a\sin(x a)\cos(y)a_0);

g=\sum_{a=9}^{\infty} (6y^a\sin(a x y^2));

h=\seriesMultiply(f, g);

\print(f, g, h);

Results:

f =

∞∑
a=6

(y)a sin(xa) cos(y)a0;

g =

∞∑
a=9

6(y)a sin(axy2);

h =

∞∑
a1=6

∞∑
a=9

(y)a1 sin(xa) cos(y)a06(y)
a sin(axy2);

SPACE=R[x];

FLOATPOS=15;

a=\teilor(\sin(x), 0, 7);

c=\value(a);

\print(a, c);

85

Returns:
in: SPACE=R[x];
FLOATPOS=15;
a=\teilor(sin(x), 0, 7);
c=\value(a); \print(a, c);
out:
a = ((−x7)/(7!) + x5/(5!) + (−x3)/(3!) + x/(1!));
c = (−0.000198412698412x7 + 0.008333333333333x5 −
0.166666666666666x3 + x).

86

Chapter 7

Solution of systems of
differential equations

7.1. The solution of first-order differential
equations

To find the solution of the differential equation it is necessary:

1. Specify the space variables (SPACE).

2. Set equation and get a solution (\solveDE).

Examples.
Equation with separating variables:

SPACE=Q[x,y];

\solveDE(\d(y,x) = (2/y)\sin(x)\cos(x));

Linear homogeneous equation:

SPACE=Q[x,y];

\solveDE(x\d(y,x) = y-x\exp(y/x));

Equation in total differentials:

SPACE=Q[x,y];

\solveDE((3x^2-3y^2+4x)\d(x)-(6xy+4y)\d(y) = 0);

87

7.2. Solution of differential equations

Procedure of solving a differential equation consists of four steps.
1. To set the ring (SPACE).
2. To set an equation(\systLDE).
3. To set initial conditions (\initCond).
4. Solving the equation(\solveLDE).
Examples.

SPACE=R64[t];

g=\systLDE(\d(y, t, 3)+3\d(y, t, 2)+3\d(y, t)+y=1);

f=\initCond(\d(y, t, 0, 0)=0, \d(y, t, 0, 1)=0,

\d(y, t, 0, 2)=0);

h=\solveLDE(g, f);

\print(h);

Returns:
in: SPACE = R64[t];

g = y
′′′

t + 3y
′′

t + 3y′t + y = 1;

f =

yt=0 = 0,

y
′

t=0 = 0,

y
′′

t=0 = 0,
h = solveLDE(g, f);
print(h);

out: h = (1.00 + (−t2)e−t/2.00)− (te−t + e−t);

SPACE=R64[t];

g=\systLDE(\d(y, t, 2)-2\d(y, t)+y=\exp(t));

f=\initCond(\d(y, t, 0, 0)=1, \d(y, t, 0, 1)=2);

h=\solveLDE(g, f);

\print(h);

Returns:
in: SPACE = R64[t];

g = y
′′

t − 2y′t + y = et;

f =

{
yt=0 = 1,

y
′

t=0 = 2,
h = solveLDE(g, f);
print(h);

out: h = ett2/2.00 + tet + et;

88

SPACE=R64[t];

g=\systLDE(\d(y, t, 2)+\d(y, t)-12y=3);

f=\initCond(\d(y, t, 0, 0)=1, \d(y, t, 0, 1)=0);

h=\solveLDE(g, f);

\print(h);

Returns:
in: SPACE = R64[t];

g = y
′′

t + y′t − 12y = 3;

f =

{
yt=0 = 1,

y
′

t=0 = 0,
h = solveLDE(g, f);
print(h);

out: h = 1.11e−1.62t + 2.89e0.62t − 3.00;

SPACE=R64[t];

g=\systLDE(\d(y, t)-2y=0);

f=\initCond(\d(y, t, 0, 0)=1);

h=\solveLDE(g, f);

\print(h);

Returns:
in: SPACE = R64[t];

g = y′t − 2y = 0;
f = yt=0 = 1;
h = solveLDE(g, f);
print(h);

out: h = e2t;

SPACE=R64[t];

g=\systLDE(\d(y, t, 2)-4y=4t);

f=\initCond(\d(y, t, 0, 0)=a, \d(y, t, 0, 1)=b);

h=\solveLDE(g, f);

\print(h);

Returns:
in: SPACE = R64[t];

g = y
′′

t − 4y = 4t;

f =

{
yt=0 = a,

y
′

t=0 = b,

89

h = solveLDE(g, f);
print(h);

out: h = (−8.00 + (−2.00b) + 2.00a)/4.00e−t + (8.00 + 2.00b +
2.00a)/4.00et − 4.00t.

SPACE=R64[t];

g=\systLDE(\d(y,t,2)-4\d(y,t)+5y=0);

f=\initCond(\d(y, t, 0, 0)=0, \d(y, t, 0, 1)=1);

h=\solveLDE(g, f);

\print(h);

Returns:
in: SPACE = R64[t];

g = y
′′

t − 4y
′

t + 5y = 0;

f =

{
yt=0 = 0,

y
′

t=0 = 1,
h = solveLDE(g, f);
print(h);

out: h = 0.53i(e(2.05−0.95i)t)− 0.53i(e(2.05+0.95i)t).

SPACE=R64[t];

g=\systLDE(\d(y,t,2)-\d(y,t)-6y=2);

f=\initCond(\d(y, t, 0, 0)=1, \d(y, t, 0, 1)=0);

h=\solveLDE(g, f);

\print(h);

Returns:
in: SPACE = R64[t];

g = y
′′

t − y
′

t − 6y = 2;

f =

{
yt=0 = 1,

y
′

t=0 = 0,
h = solveLDE(g, f);
print(h);

out: h = 0.53e3.00t + 0.80e−2.00t − 0.33.

SPACE=R64[t];

g=\systLDE(\d(y,t,2)-9y=2-t);

f=\initCond(\d(y, t, 0, 0)=0, \d(y, t, 0, 1)=1);

h=\solveLDE(g, f);

\print(h);

90

Returns:
in: SPACE = R64[t];

g = y
′′

t − 9y = 2− t;

f =

{
yt=0 = 0,

y
′

t=1 = b,
h = solveLDE(g, f);
print(h);

out: h = 0.26e3.00t + 0.04e−3.00t + 0.11t− 0.22.

7.3. Solution of systems of differential
equations

Procedure of solving a system of differential equations (SDE) consists
of four parts.

1. To set the ring (SPACE).
2. To set a system of equations (\systLDE).
3. To set initial conditions (\initCond).
4. To get solution of SDE (\solveLDE).
Examples.

SPACE=R64[t];

g=\systLDE(3\d(x, t)+2x+\d(y, t)=1, \d(x, t)+4\d(y, t)+3y=0);

f=\initCond(\d(x, t, 0, 0)=0, \d(x, t, 0, 1)=0,

\d(y, t, 0, 0)=0, \d(y, t, 0, 1)=0);

h=\solveLDE(g, f);

Returns:
in: SPACE = R64[t];

g =

{
3x′

t + 2x+ y′t = 1,
x′

t + 4y′t + 3y = 0,

f =

xt=0 = 0,

x
′

t=0 = 0,
yt=0 = 0,

y
′

t=0 = 0,
h = solveLDE(g, f);

out: h = [0.50+ (−0.30e−0.55t)+ (−0.20e−t), (−0.20e−0.55t)+0.20e−t];
In the following example, the option STEPBYSTEP = 1, gives the

output of all intermediate calculations that are needed to solve this

91

system of differential equations. Note that it does not use the command
print().

SPACE=R64[t];

STEPBYSTEP=1;

g=\systLDE(3\d(x, t)+2x+\d(y, t)=1, \d(x, t)+4\d(y, t)+3y=0);

f=\initCond(\d(x, t, 0, 0)=0, \d(x, t, 0, 1)=0,

\d(y, t, 0, 0)=0, \d(y, t, 0, 1)=0);

h=\solveLDE(g, f);

Returns:
in: SPACE = R64[t];

STEPBY STEP = 1;

g =

{
3x′

t + 2x+ y′t = 1,
x′

t + 4y′t + 3y = 0,

f =

xt=0 = 0,

x
′

t=0 = 0,
yt=0 = 0,

y
′

t=0 = 0,
h = solveLDE(g, f);

out: h = [0.50+ (−0.30e−0.55t)+ (−0.20e−t), (−0.20e−0.55t)+0.20e−t];
Solve this system of differential equations on the accuracy e.

SPACE=R[t];

e=0.00000001;

g=\systLDE(3\d(x, t)+2x+\d(y, t)=1, \d(x, t)+4\d(y, t)+3y=0);

f=\initCond(\d(x, t, 0, 0)=0, \d(x, t, 0, 1)=0,

\d(y, t, 0, 0)=0, \d(y, t, 0, 1)=0);

h=\solveLDE(g, f, e);

Returns:
in: SPACE = R[t];

e = 0.00000001;

g =

{
3x′

t + 2x+ y′t = 1,
x′

t + 4y′t + 3y = 0,

f =

xt=0 = 0,

x
′

t=0 = 0,
yt=0 = 0,

y
′

t=0 = 0,

92

h = solveLDE(g, f, e);
out: h = [0.50+ (−0.30e−0.55t)+ (−0.20e−t), (−0.20e−0.55t)+0.20e−t];

The graphics solve this system of differential equations on the accu-
racy e.

SPACE=R[t];

e=0.00000001;

g=\systLDE(3\d(x, t)+2x+\d(y, t)=1, \d(x, t)+4\d(y, t)+3y=0);

f=\initCond(\d(x, t, 0, 0)=0, \d(x, t, 0, 1)=0,

\d(y, t, 0, 0)=0, \d(y, t, 0, 1)=0);

h=\solveLDE(g, f, e);

p=\plot(h,[-10,10,-10,10]);

Returns:
in: SPACE = R[t];

e = 0.00000001;

g =

{
3x′

t + 2x+ y′t = 1,
x′

t + 4y′t + 3y = 0,

f =

xt=0 = 0,

x
′

t=0 = 0,
yt=0 = 0,

y
′

t=0 = 0,
h = solveLDE(g, f, e); p = plot(h, [−10, 10,−10, 10]);

out: h = [0.50+ (−0.30e−0.55t)+ (−0.20e−t), (−0.20e−0.55t)+0.20e−t];

The graphics solve this system of differential equations.

SPACE=R[t];

g=\systLDE(3\d(x, t)+2x+\d(y, t)=1, \d(x, t)+4\d(y, t)+3y=0);

f=\initCond(\d(x, t, 0, 0)=a, \d(x, t, 0, 1)=b,

\d(y, t, 0, 0)=c, \d(y, t, 0, 1)=d);

h=\solveLDE(g, f, 1);

p=\plot(h,[-10,10,-10,10]);

Returns:
in: SPACE = R[t];

g =

{
3x′

t + 2x+ y′t = 1,
x′

t + 4y′t + 3y = 0,

93

f =

xt=0 = a,

x
′

t=0 = b,
yt=0 = c,

y
′

t=0 = d,
h = solveLDE(g, f, 1); p = plot(h, [−10, 10,−10, 10]);

out: h = [0.50+ (−0.30e−0.55t)+ (−0.20e−t), (−0.20e−0.55t)+0.20e−t];

SPACE=R64[t];

g=\systLDE(\d(x, t)+x-2y=0, \d(y, t)+x+4y=0);

f=\initCond(\d(x, t, 0, 0)=1, \d(y, t, 0, 0)=1);

h=\solveLDE(g, f);

Returns:
in: SPACE = R64[t];

g =

{
x′

t + x− 2y = 0,
y′t + x+ 4y = 0,

f =

{
xt=0 = 1,
yt=0 = 1,

h = solveLDE(g, f);
out: h = [(4.0e−2.0t + (−3.0)e−3.0t, (−2.0)e−2.0t + 3.0e−3.0t];

SPACE=R64[t];

g=\systLDE(\d(x, t)+2x+2y=10\exp(2t), \d(y, t)-2x+y=7\exp(2t));

f=\initCond(\d(x, t, 0, 0)=1, \d(y, t, 0, 0)=3);

h=\solveLDE(g, f);

Returns:
in: SPACE = R64[t];

g =

{
x′

t + 2x+ 2y = 10e2t,
y′t − 2x+ y = 7e2t,

f =

{
xt=0 = 1,
yt=0 = 1,

h = solveLDE(g, f);
out: h = [e2.0t, 3.0e2.0t];

SPACE=R64[t];

g=\systLDE(\d(x, t)-y+z=0, -x-y+\d(y, t)=0, -x-z+\d(z, t)=0);

f= \initCond(\d(x, t, 0, 0)=1, \d(y, t, 0, 0)=2,

\d(z, t, 0, 0)=3);

94

h= \solveLDE(g, f);

\print(h);

Returns:
in: SPACE = R64[t];

g =

 x′
t − y + z = 0,

−x− y + y′t = 0,
−x− z + z′t = 0,

f =

 xt=0 = 1,
yt=0 = 2,
zt=0 = 3,

h = solveLDE(g, f);
print(h);

out: h = [(−2.00) + 5.00et + (−1.00et)t, 2.00 + (−1.00et), (−2.00) +
4.00et + (−1.00et)t];

SPACE=R64[t];

g=\systLDE(\d(x, t, 2)+\d(x, t)-\d(y, t)=1,

\d(x, t)+x-\d(y, t, 2)=1+4\exp(t));

f=\initCond(\d(x, t, 0, 0)=1, \d(x, t, 0, 1)=2,

\d(y, t, 0, 0)=0, \d(y, t, 0, 1)=1);

h= \solveLDE(g, f);

\print(h);

Returns:
in: SPACE = R64[t];

g =

{
x

′′

t + x′
t − y′t = 1,

x′
t + x− y

′′

t = 1 + 4et,

f =

xt=0 = 1,

x
′

t=0 = 2,
yt=0 = 0,

y
′

t=0 = 1,
h = solveLDE(g, f);
print(h);

out: h = [1.00+2.00et+(−1.00et)t+(−2.00e−t)+(−1.00e−t)t, (−2.00)+
(−1.00t) + 3.00et + (−2.00et)t+ (−1.00e−t)];

SPACE=R64[t];

g=\systLDE(\d(x, t)+3x-4y=9\exp(2t),

95

2x+\d(y, t)-3y=3\exp(2t));

f=\initCond(\d(x, t, 0, 0)=2, \d(y, t, 0, 0)=0);

h=\solveLDE(g, f);

\print(h);

Returns:
in: SPACE = R64[t];

g =

{
x′

t + 3x− 4y = 9e2t,
2x+ y′t − 3y = 3e2t,

f =

{
xt=0 = 2,
yt=0 = 0,

h = solveLDE(g, f);
print(h);

out: h = [et + e2.00t, et + (−1.00e2.00t)];

SPACE=R64[t];

g=\systLDE(\d(x, t)-x-2y=0, \d(y, t)-2x-y=1);

f=\initCond(\d(x, t, 0, 0)=0, \d(y, t, 0, 0)=5);

h=\solveLDE(g, f);

\print(h);

Returns:
in: SPACE = R64[t];

g =

{
x′

t − x− 2y = 0,
y′t − 2x− y = 1,

f =

{
xt=0 = 0,
yt=0 = 5,

h = solveLDE(g, f);
print(h);

out: h = [(−0.67)+0.17e3.00t+0.50e−t, 0.33+(−0.50e−t)+0.17e3.00t];

SPACE=R64[t];

g=\systLDE(\d(x, t, 2)+\d(y, t)+y=\exp(t)-t,

\d(x, t)-x+2\d(y, t, 2)-y=-\exp(-t));

f=\initCond(\d(x, t, 0, 0)=1, \d(x, t, 0, 1)=2,

\d(y, t, 0, 0)=0, \d(y, t, 0, 1)=0);

h=\solveLDE(g, f);

\print(h);

96

Returns:
in: SPACE = R64[t];

g =

{
x

′′

t + y′t + y = et − t,

x′
t − x+ 2y

′′

t − y = −e−t,

f =

xt=0 = 1,

x
′

t=0 = 2,
yt=0 = 0,

y
′

t=0 = 0,
h = solveLDE(g, f);
print(h);

out: h = [1.00t+ et, 1.00 + (−1.00t) + (−1.00e−t)];

SPACE=R64[t];

g=\systLDE(\d(x, t, 2)+\d(y, t)=\sh(t)-\sin(t)-t,

\d(y, t, 2)+\d(x, t)=\ch(t)-\cos(t));

f=\initCond(\d(x, t, 0, 0)=0, \d(x, t, 0, 1)=2,

\d(y, t, 0, 0)=1, \d(y, t, 0, 1)=0);

h=\solveLDE(g, f);

\print(h);

Returns:
in: SPACE = R64[t];

g =

{
x

′′

t + y′t = sh(t)− sin(t)− t,

y
′′

t + x′
t = ch(t)− cos(t),

f =

xt=0 = 0,

x
′

t=0 = 2,
yt=0 = 1,

y
′

t=0 = 0,
h = solveLDE(g, f);
print(h);

out: h = [1.00t + 0.50et + (−0.50e−t), (−1.00tt2)/2.00 + 0.50e1.00it +
(0.50e−1.00it)];

SPACE=R64[t];

g=\systLDE(\d(x, t, 2)-\d(x, t)+\d(y, t)=\exp(-t)+\cos(t),

\d(x, t)-\d(y, t, 2)-\d(y, t)=2\exp(t)+\sin(t));

f=\initCond(\d(x, t, 0, 0)=2, \d(x, t, 0, 1)=1,

\d(y, t, 0, 0)=0, \d(y, t, 0, 1)=1);

97

h=\solveLDE(g, f);

\print(h);

Returns:
in: SPACE = R64[t];

g =

{
x

′′

t − x′
t + y′t = e−t + cos(t),

x′
t − y

′′

t − y′t = 2et + sin(t),

f =

xt=0 = 2,

x
′

t=0 = 1,
yt=0 = 0,

y
′

t=0 = 1,
h = solveLDE(g, f);
print(h);

out: h = [0.50e1.00it + 0.50e−1.00it + (−1.00e−t), 0.50i(e1.00it) +
(−0.50i(e−1.00it)) + (2.00et)].

SPACE=R64[t];

g=\systLDE(\d(x, t)-y+z=0, -x-y+\d(y, t)=0, -x-z+\d(z, t)=0);

f= \initCond(\d(x, t, 0, 0)=a, \d(y, t, 0, 0)=b,

\d(z, t, 0, 0)=c);

h= \solveLDE(g, f);

\print(h);

Returns:
in: SPACE = R64[t];

g =

 x′
t − y + z = 0,

−x− y + y′t = 0,
−x− z + z′t = 0,

f =

 xt=0 = a,
yt=0 = b,
zt=0 = c,

h = solveLDE(g, f);
print(h);

out: h = [b − a − c + (−b + a + 2.00c)et + (b − c)ett,−b + c + a + (b −
c)et,−c− a+ b) + (c+ a)et + (−c+ b)ett];

SPACE=R64[t];

g=\systLDE(\d(y, t)+y-3x=0, -x-y+\d(x, t)=\exp(t));

f= \initCond(\d(x, t, 0, 0)=0, \d(y, t, 0, 0)=0);

98

h= \solveLDE(g, f);

\print(h);

Returns:
in: SPACE = R64[t];

g =

{
y′t − y − 3x = 0,
−x− y + x′

t = et,

f =

{
xt=0 = 0,
yt=0 = 0,

h = solveLDE(g, f);
print(h);

out: h = [−et+0.25e−2.00t+0.75e2.00t,−0.08e−2.00t+0.75e2.00t−0.67et];

SPACE=R64[t];

g=\systLDE(\d(y, t)+\d(x, t)-x=\exp(t), 2\d(y, t)+\d(x, t)+2x=\cos(t));

f= \initCond(\d(x, t, 0, 0)=0, \d(y, t, 0, 0)=0);

h= \solveLDE(g, f);

\print(h);

Returns:
in: SPACE = R64[t];

g =

{
y′t + x′

t − x = et,
2y′t + x′

t + 2x = cos(t),

f =

{
xt=0 = 0,
yt=0 = 0,

h = solveLDE(g, f);
print(h);

out: h = [(0.12 + 0.03i)eit + (0.12 − 0.03i)e−it − 0.67et +
0.43e4.00t,−0.32e4.00t − 0.50 + et + (−0.09 − 0.15i)eit + (−0.09 +
0.15i)e−it];

SPACE=R64[t];

g=\systLDE(\d(y, t)-y+x=1.5t^2, \d(x, t)+2x+4y=4t+1);

f= \initCond(\d(x, t, 0, 0)=0, \d(y, t, 0, 0)=0);

h= \solveLDE(g, f);

\print(h);

Returns:
in: SPACE = R64[t];

99

g =

{
y′t − y + x = 1.5t2,

x′
t + 2x+ 4y = 4t+ 1,

f =

{
xt=0 = 0,
yt=0 = 0,

h = solveLDE(g, f);
print(h);

out: h = [t+ t2,−0.5t2];

SPACE=R64[t];

g=\systLDE(\d(y, t)+y-x-z=0, \d(x, t)-y+x-z=0, \d(z, t)-y-x-z=0);

f= \initCond(\d(x, t, 0, 0)=0, \d(y, t, 0, 0)=1,

\d(z, t, 0, 0)=0);

h= \solveLDE(g, f);

\print(h);

Returns:
in: SPACE = R64[t];

g =

 y′t + y − x− z = 0,
x′

t − y + x− z = 0,
z′t − y − x− z = 0,

f =

 xt=0 = 0,
yt=0 = 1,
zt=0 = 0,

h = solveLDE(g, f);
print(h);

out: h = [0.33e−t+0.17e2.00t+0.5e−2.00t, 0.33e2.00t−0.33e−t, 0.17e2.00t+
0.33e−t − 0.5e−2.00t];

SPACE=R64[t];

g=\systLDE(\d(y, t)-x+z=0, \d(x, t)+2y-x=0, \d(z, t)-2y+x=0);

f= \initCond(\d(x, t, 0, 0)=0, \d(y, t, 0, 0)=1,

\d(z, t, 0, 0)=0);

h= \solveLDE(g, f);

\print(h);

Returns:
in: SPACE = R64[t];

g =

 y′t − x+ z = 0,
x′

t + 2y − x = 0,
z′t − 2y + x = 0,

100

f =

 xt=0 = 0,
yt=0 = 1,
zt=0 = 0,

h = solveLDE(g, f);
print(h);

out: h = [−0.52ie(0.5+1.94i)t+0.52ie(0.5−1.94i)t, (0.5+0.13i)e(0.5+1.94i)t+
(0.5− 0.13i)e(0.5−1.94i)t, 0.52ie(0.5+1.94i)t − 0.52ie(0.5−1.94i)t];

SPACE=R64[t];

g=\systLDE(\d(y, t, 2)+2x=0, \d(x, t, 2)-2y=0);

f=\initCond(\d(x, t, 0, 0)=0, \d(x, t, 0, 1)=0,

\d(y, t, 0, 0)=0, \d(y, t, 0, 1)=1);

h=\solveLDE(g, f);

\print(h);

Returns:
in: SPACE = R64[t];

g =

{
y

′′

t + 2x = 0,

x
′′

t − 2y = 0,

f =

xt=0 = 0,

x
′

t=0 = 0,
yt=0 = 0,

y
′

t=0 = 1,
h = solveLDE(g, f);
print(h);

out: h = [(0.13 − 0.13i)e(1+i)t + (0.13 + 0.12i)e(1−i)t + (−0.12 −
0.13i)e(−1+i)t+(−0.13+0.13i)e(−1−i)t, (−0.13−0.13i)e(1+i)t+(−0.13+
0.13i)e(1−i)t + (0.13− 0.13i)e(−1+i)t + (0.13 + 0.13i)e(−1−i)t];

SPACE=R64[t];

g=\systLDE(\d(x, t)-8y+x=0, \d(y, t)-x-y=0);

f= \initCond(\d(x, t, 0, 0)=a, \d(y, t, 0, 0)=b);

h= \solveLDE(g, f);

\print(h);

Returns:
in: SPACE = R64[t];

g =

{
x′

t − 8y + x = 0,
y′t − x− y = 0,

101

f =

{
xt=0 = a,
yt=0 = b,

h = solveLDE(g, f);
print(h);

out: h = [((4b + a)/3)e3.00t + ((−4 ∗ b + 2a)/3)e−3.00t, ((−a +
2b)/6)e−3.00t + ((a+ 4b)/6)e3.00t];

SPACE=R64[t];

g=\systLDE(\d(x, t)+3x-4y=9(\exp(t))^2, \d(y, t)+2x-3y=3(\exp(t))^2);

f= \initCond(\d(x, t, 0, 0)=2, \d(y, t, 0, 0)=0);

h= \solveLDE(g, f);

\print(h);

Returns:
in: SPACE = R64[t];

g =

{
x′

t + 3x− 4y = 9(et)2,
y′t + 2x− 3y = 3(et)2,

f =

{
xt=0 = 2,
yt=0 = 0,

h = solveLDE(g, f);
print(h);

out: h = [et + e2.00t, et − e2.00t];

SPACE=R64[t];

g=\systLDE(\d(x, t, 2)+\d(y, t)=\sh(t)-\sin(t)-t, \d(y, t, 2)-\d(x, t)=\ch(t)-\cos(t));

f=\initCond(\d(x, t, 0, 0)=2, \d(x, t, 0, 1)=0,

\d(y, t, 0, 0)=0, \d(y, t, 0, 1)=1);

h=\solveLDE(g, f);

\print(h);

Returns:
in: SPACE = R64[t];

g =

{
x

′′

t + y′t = sh(t)− sin(t)− t,

y
′′

t − x′
t = ch(t)− cos(t),

f =

xt=0 = 2,

x
′

t=0 = 0,
yt=0 = 0,

y
′

t=0 = 1,
h = solveLDE(g, f);

102

print(h);
out: h = [1− t+ (0.5− 0.5i)eit + (0.5 + 0.5i)e−it,−1− 0.5t2 − 0.5ieit +
0.5ie−it + 0.5et + 0.5e−t];

SPACE=R64[t];

g=\systLDE(\d(x, t)+5y-4x=0, \d(y, t)-x=0);

f= \initCond(\d(x, t, 0, 0)=0, \d(y, t, 0, 0)=1);

h= \solveLDE(g, f);

\print(h);

Returns:
in: SPACE = R64[t];

g =

{
x′

t + 5y − 4x = 0,
y′t − x = 0,

f =

{
xt=0 = 0,
yt=0 = 1,

h = solveLDE(g, f);
print(h);

out: h = [(0.5 + i)e(2+i)t + (0.5− i)e(2−i)t, 2.5ie(2+i)t − 2.5ie(2−i)t];

7.4. LaplaceTransform and Inverse-
LaplaceTransform

SPACE=R64[t];

L=\laplaceTransform(\exp(3t));

\print(L);

Returns:
in: SPACE = R64[t];

L = laplaceTransform(exp(3t)).
print(L);

out: L = 1.0
t−3.0

SPACE=R64[t];

L=\inverseLaplaceTransform(1/(t-3));

\print(L);

103

7.5. Calculation of the characteristics of
dynamic objects and systems

To find the transfer function of the object, you must perform the
following steps:

1. Specify the space variables (SPACE).
2. Ask equation input - x.
3. Ask output equation - y.
4. Obtain a solution (\solveWFDS).
Examples.

SPACE = R64[t];

f = \d(y,t,2)+2\d(y,t);

g = 3x;

h = \solveTransferFunction(g,f);

\print(h);

\set2D(-10, 10, -10, 10,’p’,’W(p)’,’Transfer function’);

p=\plot(h);

Returns:
in: SPACE = R64[t];

f = y
′′

t + 2y
′′

t ;
g = 3x;
h = solveTransferFunction(g, f);
print(h);
set2D(−10, 10,−10, 10,′ p′,′ W (p)′,′ Transferfunction′);
p = plot(h);

out: h = [3.0/(p2 + 2.0p)];
To find the temporal characteristics of the object, perform the fol-

lowing steps:
1. Specify the space variables (SPACE).
2. Ask equation input - x.
3. Ask output equation - y.
4. Obtain a solution (\solveTPDS).

SPACE = R64[t];

f = \d(y,t,2)+2\d(y,t);

g = 3x;

h = \solveTimeResponse(g,f);

104

\print(h);

\set2D(-10, 10, -10, 10,’p’,’k(p),h(p)’,’Temporal characteristics’);

p=\plot(h);

Returns:
in: SPACE = R64[t];

f = y
′′

t + 2y
′′

t ;
g = 3x;
h = solveT imeResponse(g, f);
print(h);
set2D(−10, 10,−10, 10,′ p′,′ k(p), h(p)′,′ Temporalcharacteristics′);
p = plot(h);

out: h = [(1.5exp(2.0p) ∗ 3.0 + (−1.5) ∗ 3.0), ((−0.75) + (−1.5p) +
0.75exp(2p))];

To find the frequency characteristics of the object, you must perform
the following steps:

1. Specify the space variables (SPACE).
2. Ask equation input - x.
3. Ask output equation - y.
4. Obtain a solution (\solveCHDS).

SPACE = R64[t];

f = \d(y,t,2)+2\d(y,t);

g = 3x;

h = \solveFrequenceResponse(g,f);

SPACE = R64[j,p];

\print(h);

Returns:
in: SPACE = R64[t];

f = y
′′

t + 2y
′′

t ;
g = 3x;
h = solveFrequenceResponse(g, f);
SPACE = R64[j, p];
print(h);

out: h = [3.0/(p2j2+2.0pj), sqrt9.0/(p4 + 4.0p2), arctg(sqrt2/p), 20.0lg(sqrt9.0/(p4 + 4.0p2))];

Returns:
in: SPACE = R64[t];

105

L = inverseLaplaceTransform(1/(t− 3)).
print(L);

out: L = exp(3t)

106

Chapter 8

Polynomial computations

8.1. Calculation of the value of a polyno-
mial at the point

To calculate the value of a function at the point you must
run \value(f, [var1, var2, . . . , varn]), where f — is a polynomial
in which the variables are replaced by the corresponding values of
var1, var2, . . . , varn.

Example.

SPACE=R[x, y];

f=x^2+5x(y^3+x);

g=\value(f, [1, 2]);

\print(g);

Returns:
in: SPACE = R[x, y];

f = x2 + 5x(y3 + x);
g = value(f, [1, 2]);
print(g);

out: g = 46.00.

107

8.2. Factorization of polynomials. Bringing
polynomials to the standard form.

Polynomials are automatically brought to the standard form, which
assumes, that the first written the leading monomials, and then younger.
Recall that the order of variables in the ring determines seniority of
variables.

To bring to the standard form of a polynomial can also be run
\expand(f), where f — is a polynomial.

For factoring polynomials you must execute the command
\factor(f), where f — it is a polynomial.

Example.

SPACE=Q[x, y];

f= (y^3+x)^2(x+1)^3;

g=\expand(f);

h=\factor(g);

\print(g,h);

Returns:
in: SPACE = Q[x, y];

f = (y3 + x)2(x+ 1)3;
g = expand(f);
h = factor(g);
print(g, h);

out: g = y6x3 + 3y6x2 + 3y6x+ y6 + 2y3x4 + 6y3x3 + 6y3x2 + 2y3x+
x5 + 3x4 + 3x3 + x2;

h = (x+ 1)3(y3 + x)2;

8.3. Geometric progression. Summation of
polynomial with respect to the vari-
ables

For the summation of polynomial with respect to the variables we
must run \SumOfPol(f, [x, y], [x1, x2, y1, y2]), where f — a polyno-
mial, x, y — variables for summation, x1, x2 — range of summation
over x, y1, y2 — range of summation over y.

108

If intervals of summation on all variables coincide then we can write
\SumOfPol(f, [x, y], [x1, x2]), where x1, x2 — summation interval for
x and y.

Example.

SPACE=R[x, y, z];

f=x^2z+xy+y^3xz;

res=\SumOfPol(f, [x, y], [2, 4, -2, 3]);

\print(res);

Returns:
in: SPACE = R[x, y, z];

f = x2z + xy + y3xz;
res = SumOfPol(f, [x, y], [2, 4,−2, 3]);
print(res);

out: res = 417.00z + 27.00.
To convert a polynomial using the formula of the sum of a geometric

progression, you must run \SearchOfProgression(f). This command
searches for a geometric progression with the largest number of members
in this polynomial. Then do it again for the remaining members, and so
on. All the detected progression be written as Sn = b1(q

n − 1)/(q − 1),
where Sn — sum of the first n members, b1 — the first term of a
geometric progression, q — the geometric ratio.

Example.

SPACE=R[x, y, z];

f=x^3+x^4+x^5+x^6+x^7+x^8+x^9+x^10+x^11+x^12+x^13;

g=x+x^5+x^9+x^13+xyz+7x^2y^2z^2+7x^3y^3z^3+100xy+x+x^2+x^3+x^4;

f1=\SearchOfProgression(f);

g1=\SearchOfProgression(g);

\print(f1, g1);

Returns:
in: SPACE = R[x, y, z];

f = x3 + x4 + x5 + x6 + x7 + x8 + x9 + x10 + x11 + x12 + x13;
g = x+x5+x9+x13+xyz+7x2y2z2+7x3y3z3+100xy+x+x2+x3+x4;
f1 = SearchOfProgression(f);
g1 = SearchOfProgression(g);
print(f1, g1);

out: f1 = (x14 − x3)/(x− 1);

109

g1 = ((100.00yx+ x13 + x9 + x) + (z4y4x4 − zyx)/(zyx− 1) + (x6 −
x)/(x− 1) + 6.00z3y3x3 + 6.00z2y2x2).

8.4. Groebner basis of polynomial ideal

The Groebner basis of polynomial ideal may be obtained due to
the Bruno Buchberger algorithm \groebnerB(). You can obtain the
same basis using matrix algorithm, which similar to F4 algorithm
\groebnerB(). We use reverse lexicographical order. The order of the
variables defined in the command SPACE,

Examples.

SPACE=Q[x, y, z];

b=\groebnerB(x^4y^3+2xy^2+3x+1, x^3y^2+x^2, x^4y+z^2+xy^4+3);

\print(b);

Returns:
in: SPACE = Q[x, y, z];

b = groebnerB(x4y3 +2xy2 +3x+1, x3y2 + x2, x4y+ z2 + xy4 +3);
print(b);

out: b = [z2−x4+3x2+(−10)x+9, y+(−9)x4+(−3)x3−x2+(−81)x+
27, x5 + 9x2 + (−6)x+ 1];

SPACE=Z[x, y, z];

b=\groebner(x^4y^3+2xy^2+3x+1, x^3y^2+x^2, x^4y+z^2+x y^4+3);

\print(b);

Returns:
in: SPACE = Q[x, y, z];

b = groebner(x4y3 + 2xy2 + 3x+ 1, x3y2 + x2, x4y + z2 + xy4 + 3);
print(b);

out: b = [z2−x4+3x2+(−10)x+9, x5+9x2+(−6)x+1, y+(−9)x4+
(−3)x3 − x2 + (−81)x+ 27].

8.5. Calculations in quotient ring of ideal

\reduceByGB(f, [g1, . . . , gN]) function reduces polynomial p with
given set of polynomial g1, . . . , gN .

110

SPACE = Q[x, y, z];

p = \reduceByGB(5y^2 + 3x^2 + z^2, [y + x, 5z^2 + 5z]);

Returns:
in: SPACE = Q[x, y, z];

p = \reduceByGB(5y2 + 3x2 + z2, [y + x, 5z2 + 5z]);
−z + 8x2;

out:
In case when second argument isn’t a reduced Groebner basis re-

sult depends on positions of polynomials in array: among all potential
reductors the first one will be chosen.

SPACE = Q[x, y];

NotGB1 = [x + y, x^2 + y^2];

imForNotGBset1 = \reduceByGB(x^2 + y^2, NotGB1);

NotGB2 = [x^2 + y^2, x + y];

imForNotGBset2 = \reduceByGB(x^2 + y^2, NotGB2);

GB = \groebner(x+y, x^2+y^2);

imForGB = \reduceByGB(x^2 + y^2, GB);

\print(GB, imForNotGBset1, imForNotGBset2, imForGB);

Returns:
in: SPACE = Q[x, y];
NotGB1 = [x+ y, x2 + y2];
imForNotGBset1 = reduceByGB(x2 + y2, NotGB1);
NotGB2 = [x2 + y2, x+ y];
imForNotGBset2 = reduceByGB(x2 + y2, NotGB2);
GB = groebner(x+ y, x2 + y2);
imForGB = reduceByGB(x2 + y2, GB);
print(GB, imForNotGBset1, imForNotGBset2, imForGB);
out: GB = [y + x, x2];
imForNotGBset1 = 2x2;
imForNotGBset2 = 0;
imForGB = 0;

8.6. Solution of systems of nonlinear alge-
braic equations

To obtain the solution of the polynomial system

111

p1 = 0,
p2 = 0,
...
pN = 0,
use the command \solveNAE(p1, p2, . . . , pN).

SPACE = R[x, y];

\solveNAE(x^2 + y^2 - 4, y - x^2);

SPACE = R[a, b, c];

S = \solveNAE(a + b + c, a b + a c + b c, a b c - 1);

8.7. Other polynomial functions

For polynomials in several variables (f, g), you can calculate GCD,
LCM, a resultant (as the determinant of their Sylvester matrix), a dis-
criminant:

GCD (f, g),
LCM (f, g),
resultant (f, g),
discriminant (f).
In this case, the main variable is the highest (last) variable, which

is defined in the statement SPACE.
Example.

PACE=Z[q,r,s,x];

p=x^4+q*x^2+r*x+s;

\discriminant(p);

Returns:
in: 256s3 − 128s2q2 + 144sr2q + 16sq4 − 27r4 − 4r2q3

out: 256s3 − 128s2q2 + 144sr2q + 16sq4 − 27r4 − 4r2q3

112

Chapter 9

Matrix functions

9.1. Calculation of the transposed matrix

To compute the transpose of the matrix A must run \transpose(A)
or Â {T}.

Example.

SPACE=Z[x];

A=[[1, 2], [4, 5]];

B=A^{T};

\print(B);

Returns:
in: SPACE = Z[x];

A =

(
1 2
4 5

)
;

B = AT ;
print(B);

out: B =

(
1 4
2 5

)
.

9.2. Getting the dimensions of a matrix
and a vector

You can get the number of rows, the number of columns, or both
dimensions of a matrix. To do this, you need to execute one of the com-

113

mands \rowNumb(A), \colNumb(A), or \size(A). The same com-
mands can be used for both a vector row and a vector column.

Example.

SPACE=Z[x];

A=[[1, 2,1], [4, 5,9]];

r=\rowNumb(A); c=\colNumb(A); s = \size(A);

\print(r,c,s);

Returns:
in: SPACE = Z[x];

A =

(
1 2 1
4 5 9

)
;

r = rowNumb(A); c = colNumb(A); s = size(A);
print(r, c, s);

out: r = 2 c = 3 s = [2, 3]

9.3. The calculation of adjoint and inverse
matrices

9.3.1. The calculation of inverse matrix

To calculate the inverse matrix for the matrix A, to execute \inverse(A)
or A {̂(−1)}.

Examples.

SPACE=Z[x];

A=[[1, 4], [4, 5]];

B=\inverse(A);

\print(B);

Returns:
in: SPACE = Z[x];

A =

(
1 2
4 5

)
;

B = inverse(A);
print(B);

out: B =

(
(−5)/11 4/11
4/11 (−1)/11

)
;

114

SPACE=Z[x, y];

A=[[x+y, x], [y, \cos(x)]];

B=\inverse(A);

\print(B);

Returns:
in: SPACE = Z[x, y];

A =

(
x+ y x
y cos(x)

)
;

B = inverse(A);
print(B);

out: B =

(
cos(x)

y cos(x)+x cos(x)+(−yx)
−x

y cos(x)+x cos(x)+(−yx)
−y

(y cos(x)+x cos(x)+(−yx) y + x
(y cos(x)+x cos(x)+(−yx)

)
.

9.3.2. Calculation of adjoint matrix

To calculate the adjoint matrix for a given matrix A execute
\adjoint(A) or A {̂\star}.

Examples.

SPACE=Z[x];

A=[[1, 4], [4, 5]];

B=\adjoint(A);

\print(B);

Returns:
in: SPACE = Z[x];

A =

(
1 2
4 5

)
;

B = adjoint(A);
print(B);

out: B =

(
5 −4
−4 1

)
;

SPACE=Z[x, y];

A=[[\cos(y), \sin(x)], [\sin(y), \cos(x)]];

B=\adjoint(A);

\print(B);

115

Returns:
in: SPACE = Z[x, y];

A =

(
cos(y) sin(x)
sin(y) cos(x)

)
;

B = adjoint(A);
print(B);

out: B =

(
cos(x) −sin(x)
−sin(y) cos(y)

)
.

9.4. Calculation of the matrix determinant
and rank

To calculate the rank of a matrix A, you must run \rank(A), to
calculate its determinant, you must run \det(A).

Examples.

SPACE=Z[x];

A=[[1, 4], [4, 5]];

B=\det(A); r=\rank(A);

\print(B,r);

Returns:
in: SPACE = Z[x];

A =

(
1 4
4 5

)
;

B = det(A); r = rank(A);
print(B, r);

out: B = −11; r = 2;

SPACE=R[x];

A=[[3, 4], [3, 1]];

B=\det(A);

\print(B);

Returns:
in: SPACE = R[x];

A =

(
3 4
3 1

)
;

B = det(A);

116

print(B);
out: B = −9;

SPACE=Z[x, y];

A=[[x^2, y], [4, x+y]];

B=\det(A);

\print(B);

Returns:
in: SPACE = Z[x, y];

A =

(
x2 y
4 x+ y

)
;

B = det(A);
print(B);

out: B = yx2 − 4y + x3;

SPACE=Z[x, y];

A=[[x+y, \sin(x)], [y, \cos(x)]];

B=\det(A);

\print(B);

Returns:
in: SPACE = Z[x, y];

A =

(
x+ y sin(x)
y cos(x)

)
;

B = det(A);
print(B);

out: B = y · cos(x) + x · cos(x)− y · sin(x).

9.5. Calculation of the conjugate matrix

To calculate the conjugate matrix, you must run \conjugate(A) or
A {̂\ast}.

Example.

SPACE=C[x];

A=[[1+\i, 2-\i], [-3, -2\i]];

B=A^{\ast};

\print(B);

117

Returns:
in: SPACE = C[x];

A =

(
1 + i 2− i
−3 −2i

)
;

B = A∗;
print(B);

out: B =

(
1− 1.0i −3
2 + 1.0i 2.0i

)
.

9.6. Computing SVD-decomposition

To calculate the SVD-decomposition of a matrix, you must execute
the command \SVD(A). As a result, three matrices [U,D, V] will be
calculated. The matrices U, V are unitary, the matrix D is diagonal:
A = UDV .

Example.

SPACE = R64[];

A = [[2,3,4], [1,3,3], [2,4,3]];

B = \SVD(A);

\print(B);

9.7. Calculation of the generalized inverse
matrix

To compute the generalized inverse Moore-Penrose matrix must run
\genInverse(A) or A {̂+}.

Example.

SPACE=Z[x];

A=[[1, 4, 5], [2, 4, 5]];

B=A^{+};

\print(B);

Returns:
in: SPACE = Z[x];

A =

(
1 4 5
2 4 5

)
;

B = A+;

118

print(B);

out: B =

 −1 1 0
8/41 (−4)/41 0
10/41 (−5)/41 0

 .

9.8. Computation of the kernel and echelon
form

9.8.1. Computation of the echelon form

To compute the echelon form of the matrix A, you should run
\toEchelonForm(A).

Examples.
SPACE=Z[x];

A=[[1, 4], [4, 5]];

B=\toEchelonForm(A);

\print(B);

Returns:
in: SPACE = Z[x];

A =

(
1 4
4 5

)
;

B = toEchelonForm(A);
print(B);

out: B =

(
−11 0
0 −11

)
;

SPACE=Z[x, y];

A=[[\cos(y), \sin(x)], [\sin(y), \cos(x)]];

B=\toEchelonForm(A);

\print(B);

Returns:
in: SPACE = Z[x, y];

A =

(
cos(y) sin(x)
sin(y) cos(x)

)
;

B = toEchelonForm(A);
print(B);

out:B =

(
cos(y)cos(x)− sin(x)sin(y) 0

0 cos(y)cos(x)− sin(x)sin(y)

)
.

119

9.8.2. Computation of the kernel

To calculate the kernel of matrix A, you should run \kernel(A).
Examples.

SPACE=Z[x];

A=[[1, 4], [4, 16]];

B=\kernel(A);

\print(B);

Returns:
in: SPACE = Z[x];

A =

(
1 4
4 16

)
;

B = kernel(A);
print(B);

out: B =

(
0 4
0 −1

)
;

SPACE=Z[x, y];

A=[[x+y, x], [(x+y)x, x^2]];

B=\kernel(A);

\print(B);

Returns:
in: SPACE = Z[x, y];

A =

(
x+ y x

(x+ y)x x2

)
;

B = kernel(A);
print(B);

out: B =

(
0 x
0 −y − x

)
.

9.9. Calculating the characteristic polyno-
mial of matrix

To calculate the characteristic polynomial of the matrix A with en-
tries in R[x1, . . . , xm], you should give the ring R[x1, . . . , xm]R[t] or
R[t, x1, . . . , xm] with some new variable t and run \charPolynom(A).

Examples.

120

SPACE=Z[x];

A=[[1, 4], [4, 5]];

B=\charPolynom(A);

\print(B);

Returns:
in: SPACE = Z[x];

A =

(
1 2
4 5

)
;

B = charPolynom(A);
print(B);

out: B = x2 + (−6)x+ (−11);

SPACE=Z[x, y]Z[t];

A=[[\cos(y), \sin(x)], [\sin(y), \cos(x)]];

B=\charPolynom(A);

\print(B);

Returns:
in: SPACE = Z[x, y];

A =

(
cos(y) sin(x)
sin(y) cos(x)

)
;

B = charPolynom(A);
print(B);

out: B = t2 + (− cos(x)− cos(y))t+ cos(y) cos(x)− sin(x) sin(y).

9.10. Calculating LSU-decomposition of
the matrix

To calculate the LSU-decomposition of the matrix A, you must run
\LSU(A).

The result is a vector of three matrices [L,D,U]. Where L is a lower
triangular matrix, U — upper triangular matrix, D — permutation
matrix, multiplied by the inverse of the diagonal matrix. If the elements
of the matrix A are elements of commutative domain R, then elements
of matrices L, D−1, U are elements of the same domain R.

Examples.

121

SPACE=Z[x];

A=[[0, 1, 0], [4, 5, 1],[1, 1, 1]];

B=\LSU(A);

\print(B);

Returns:
in: SPACE = Z[x];

A =

 0 1 0
4 5 1
1 1 1

 ;

B = LSU(A)
print(B);

out:B =

 4 0 0
0 4 0
−1 1 3

 ,

 0 1/16 0
1/4 0 0
0 0 1/12

 ,

 4 5 1
0 4 0
0 0 3

 .

SPACE=Z[x];

A=[[1, 4,0,1], [4, 5,5,3],[1,2,2,2],[3,0,0,1]];

B=\LSU(A);

\print(B);

Returns:
in: SPACE = Z[x];

A =

1 −4 0 1
4 5 5 3
1 2 2 2
3 0 0 1

 ;

B = LSU(A)
print(B);

122

out: B =

1 0 0 0
4 −11 0 0
1 −2 −12 0
3 −12 60 −60

1 0 0 0
0 1/(−11) 0 0
0 0 1/132 0
0 0 0 1/720

1 4 0 1
0 −11 5 −1
0 0 −12 −13
0 0 0 −60

.

SPACE=Z[x,y];

A=[[\cos(y),\sin(x)],[\sin(y),\cos(x)]];

B=\LSU(A);

\print(B);

Returns:
in: SPACE = Z[x, y];

A =

(
cos(y) sin(x)
sin(y) cos(x)

)
B = LSU(A)
print(B);

out:B =

(
cos(y) 0
sin(y) cos(y) cos(x) + (− sin(x) sin(y))

)
(

1/ cos(y) 0
0 1/((cos(y))2 cos(x) + (−1 cos(y) sin(x) sin(y)))

)
(

cos(y) sin(x)
0 cos(y) cos(x) + (− sin(x) sin(y))

)

.

9.11. Choletsky Decomposition

This decomposition is done with a command where the argument is
the original matrix: \cholesky(A) or \cholesky(A, 0). In this case, the

123

matrix must be symmetric and positive definite, only in this case the
expansion will be correctly calculated.

The result is two lower triangular matrices: [L, S], with A = l ∗ LT

and S ∗ L = I.
For large dense matrices, starting from a size of 100x100, you can

use a fast algorithm that uses multiplication of blocks by the Winograd-
Strassen algorithm: \cholesky(A, 1).

Example.

SPACE=R64[];

A=[[3,2],[2,4]];

B=\cholesky(A);

\print(B);

Returns:
in: SPACE = R64[];

A =

(
3 2
2 4

)
;

B = cholesky(A)
print(B);

out: B =

[(
1.73 0
1.15 1.63

)
,

(
0.58 0
−0.41 0.61

)]
.

9.12. LSUWMdet decomposition

To calculate the LSU-decomposition of the matrix A together with
decomposition of the pseudo inverse matrix A× = (1/det2)WSM , you
must run \LSUWMdet(A).

The result is a vector of five matrices and determinant of the largest
non-degenerate corner block [L,D,U,W,M, det]. Here L and U are the
lower and upper triangular matrices, S — truncated weighted permu-
tation matrix, DM and WD — lower and upper triangular matrices.
Moreover, A = LSU and A× = (1/det2)WSM . If the elements of the
matrix A are taken from the commutative domain, then all matrices,
except for S, also belong to this domain.

Example.

SPACE=Z[x,y];

A=[[0, 1, x],[0, 5*y, 2],[y,3x, 1]];

B=\LSUWMdet(A);

\print(B);

124

Returns:
in: SPACE = Z[x, y];

A =

 0 1 x
0 5y 2
y 3x 1

 ;

B = LSUWMdet(A)
print(B);

out: B =

 1 0 0
5y −5y2x+ 2y 0
3x 0 y

 ,

 0 1 0
0 0 (−1/(5y3x+−2y2))

1/y 0 0

 ,

 y 0 −3x2 + 1
0 1 x
0 0 −5y2x+ 2y

 ,

 0 −15y2x3 + 5y2x+ 6yx2 − 2y −5y2x+ 2y
−5y2x+ 2y 5y3x2 − 2y2x 0

0 −5y3x+ 2y2 0

 ,

 15y2x2 − 6yx 0 −5y2x+ 2y
−5y2x+ 2y 0 0
25y4x− 10y3 −5y3x+ 2y2 0

 ,[
−5y2x+ 2y

]

.

9.13. Calculating Bruhat decomposition of
the matrix

To calculate the Bruhat decomposition of the matrix A, you must
run \BruhatDecomposition(A).

The result is a vector of three matrices [V,D,U]. Where V and U —
upper triangular matrices, D — permutation matrix, multiplied by the
inverse of the diagonal matrix. If the elements of the matrix A are
elements of commutative domain R, then elements of matrices V , D−1,

125

U are elements of the same domain R.
Examples.

SPACE=Z[x];

A=[[1, 4,0,1], [4, 5,5,3],[1,2,2,2],[3,0,0,1]];

B=\BruhatDecomposition(A);

\print(B);

Returns:
in: SPACE = Z[x];

A =

1 −4 0 1
4 5 5 3
1 2 2 2
3 0 0 1

 ;

B = BruhatDecomposition(A)
print(B);

out: B =

−24 0 12 1
0 60 15 4
0 0 6 1
0 0 0 3

0 0 1/(−144) 0
0 0 0 1/(−1440)
0 1/18 0 0

1/3 0 0 0

3 0 0 1
0 6 6 5
0 0 −24 −16
0 0 0 60

.

SPACE=Z[x,y];

A=[[\cos(y),\sin(x)],[\sin(y),\cos(x)]];

B=\BruhatDecomposition(A);

\print(B);

Returns:
in: SPACE = Z[x, y];

A =

(
cos(y) sin(x)
sin(y) cos(x)

)
126

B = BruhatDecomposition(A)
print(B);

out:B =

(
− cos(y) ∗ cos(x) + sin(x) ∗ sin(y) cos(y)

0 sin(y)

)
(

0 1/(− cos(y) sin(y) cos(x) + sin(x)(sin(y))2)
1/ sin(y) 0

)
(

sin(y) cos(x)
0 − cos(y) cos(x) + sin(x) sin(y)

)

.

Other functions:

\LSUWMdet — Result is a vector of 6 matrices
[L, S, U,W,M, [[det]]]. A = LSU, pseudoInverse(A) = (1/det2)WSM,
det is a nonzero maximum in size angular minor.

\pseudoInverse — Pseudo inverse of a matrix. It, unlike the
Moore-Penrose matrix, satisfies only two of the four identities. How-
ever, it is faster to compute;

\SVD — SVD decomposition of a matrix over real numbers. The
result is a vector of three matrices [U,D, V T]. Here U, V T — are or-
thogonal matrices, D is a diagonal matrix.

\QR — QR decomposition of a matrix over real numbers. The
result is a vector of two matrices [Q,R]. Here Q — is an orthogonal
matrix, R — is an upper triangular matrix.

\sylvesterp1, p2, kind = 0or1 — the Sylvester matrix is con-
structed from the coefficients of the polynomials p1, p2. The ring Z [x,
y, z, u] will be considered as a ring Z[u][x, y, z] (ring in one variable u
with coefficients from Z[x, y, z].) If kind = 0, then the size of the matrix
is (n1 + n2), if kind = 1, then the size of the matrix is 2*max(n1, n2).

9.14. Linear programming

Let there be given the objective function
∑n

j=1 cjxj and conditions

n∑
j=1

aijxj ⩽ bi, here i = 1, 2, . . . ,m,

127

xj ⩾ 0, here j = 1, 2, . . . , n.

We define m × n-matrix A = (aij), m-dimensional vector b = (bi),
n-dimensional vector c = (cj) and n-dimensional vector x = (xj).

Then the objective function can be written as cTx, and and condi-
tions can be written as

Ax ⩽ b,

x ⩾ 0.

For solving linear programming problems, you can use one of the
following two commands \SimplexMax or \SimplexMin. The result
is a vector.

Depending on the type of problem you have the following options.

1. To solve the problem

cTx → max

under conditions

Ax ⩽ b,

x ⩾ 0,

we use the \SimplexMax(A, b, c).

If the objective function needs to be minimized, , i.e.

cTx → min,

then we use the \SimplexMin(A, b, c).

Example.

We need to maximize the

3x1 + x2 + 2x3

under the conditions
x1 + x2 + 3x3 ⩽ 30,
2x1 + 2x2 + 5x3 ⩽ 24,
4x1 + x2 + 2x3 ⩽ 36,

x1, x2, x3 ⩾ 0.

128

SPACE = R64[];

A = [[1, 1, 3],[2, 2, 5],[4, 1, 2]];

b = [30, 24, 36];

c = [3, 1, 2];

x = \SimplexMax(A, b, c);

Returns:
in:
out: [8.0, 4.0, 0.0];

2. To solve the problem

cTx → max

under the conditions
A1x ⩽ b1,

A2x = b2,

x ⩾ 0,

we use the \SimplexMax(A1, A2, b1, b2, c).
If the objective function needs to be minimized, i.e.

cTx → min,

then we use the \SimplexMin(A1, A2, b1, b2, c).
Example.
We need to maximize the

7x1 + x3 − 4x4

under the conditions x1 − x2 + 2x3 − x4 ⩽ 6,
2x1 + x2 − x3 = −1,
x1, x2, x3, x4 ⩾ 0.

SPACE = R64[];

A1 = [[1, -1, 2, -1]];

A2 = [[2, 1, -1, 0]];

b1 = [6];

b2 = [-1];

c = [7, 0, 1, -4];

x = \SimplexMax(A1, A2, b1, b2, c);

129

Returns:
in:
out: [0.8, 0.0, 2.6, 0.0];

3. To solve the problem

cTx → max

under the conditions

A1x ⩽ b1,

A2x = b2,

A3x ⩾ b3,

we use the \SimplexMax(A1, A2, A3, b1, b2, b3, c).
If the objective function needs to be minimized, i.e.

cTx → min,

then we use the \SimplexMin(A1, A2, A3, b1, b2, b3, c).
Example.

7x1 + x3 − 4x4

We need to maximize the

x1 + x2

under the conditions
4x1 − x2 ⩽ 8,
2x1 + x2 ⩽ 10,

−5x1 + 2x2 ⩾ −2,
x1, x2 ⩾ 0.

SPACE = R64[];

A1 = [[4, -1], [2, 1]];

A3 = [[-5, 2]];

b1 = [8, 10];

b3 = [-2];

c = [1, 1];

x = \SimplexMax(A1, [[]], A3, b1, [], b3, c);

130

Returns:
in:
out: [2.0, 6.0];

4. To solve the problem

cTx → max

in mixed conditions desired by the matrix A and vector b, you can use
the command \SimplexMax(A, signs, b, c), where an array of integers
signs determines the signs of comparison:

-1 means ”less than or equal to”,
0 means ”equal to”,
1 means ”greater than or equal to”.
The array signs must contain the same number of elements as the

vector b. If the objective function needs to be minimized, i.e.

cTx → min,

then we use the \SimplexMin(A, signs, b, c).
Example.
We need to minimize the

−2x1 − 4x2 − 2x3

under the conditions
−2x1 + x2 + x3 ⩽ 4,
−x1 + x2 + 3x3 ⩽ 6,
x1 − 3x2 + x3 ⩽ 2,

x1, x2, x3 ⩾ 0.

In:

SPACE = R64[];

A = [[-2, 1, 1],[-1, 1, 3],[1, -3, 1]];

b = [4, 6, 2];

c = [-2, -4, -2];

signs = [-1, -1, -1];

x = \SimplexMin(A, signs, b, c);

Returns:
in:
out: Simplex: LP-problem is unbounded!

131

Chapter 10

The functions of the
probability theory and
statistics

10.1. Functions of the discrete random
quantity

To define a discrete random quantity, enter the matrix, in which the
first line — values, and the second — the corresponding probabilities
(numbers that are in the range from 0 to 1). For example: DRQ =
([1,2,3,4,5],[0.4,0.1,0.1,0.2,0.2]).

There are the following functions for working with discrete random
variable:

\mathExpectation(DRQ) calculates the expectation of a discrete
random variable DRQ.

\dispersion(DRQ) calculates the variance of a discrete random
variable DRQ.

\meanSquareDeviation(DRQ) calculates the standard deviation
of a discrete random variable DRQ.

\addQU(DRQ1, DRQ2) adds the two discrete random variables
DRQ1 and DRQ2.

\multiplyQU(DRQ1, DRQ2) multiplies two discrete random vari-
ables DRQ1 and DRQ2.

132

\covariance(DRQ1, DRQ2) calculates the covariance coefficient of
two discrete random variables DRQ1 and DRQ2.

\correlation(DRQ1, DRQ2) calculates the correlation coefficient
of two discrete random variables DRQ1 and DRQ2.

\plotPolygonDistribution(DRQ,V) building polygon distribu-
tions of discrete random variable DRQ.

\plotDistributionFunction(DRQ,V) constructing the distribu-
tion function of a discrete random variable DRQ, where V — is the
matrix of one row, 4 elements that define the boundaries Graphics:
[x1, x2, y1, y2].

\simplifyQU(DRQ) simplify a discrete random variable DRQ.
Examples:

SPACE=R64[x];

M=[[1, 2], [0. 2, 0. 8]];

g=\mathExpectation(M);

g1=\dispersion(M);

g2=\meanSquareDeviation(M);

\print(g, g1, g2);

Returns:
in: SPACE = R64[x];

M =

(
1 2
0.2 0.8

)
;

g = mathExpectation(M);
g1 = dispersion(M);
g2 = meanSquareDeviation(M);
print(g, g1, g2);

out: g = 1.8;
g1 = 0.16;
g2 = 0.39;

SPACE=R64[x];

M=[[7, 5, 3, 5, 1], [0. 2, 0. 1, 0. 3, 0. 1, 0. 3]];

g=\simplifyQU(M);

\print(g);

Returns:
in: SPACE = R64[x];

133

M =

(
7 5 3 5 1
0.2 0.1 0.3 0.1 0.3

)
;

g = simplifyQU(M);
print(g);

out: g =

(
1 3 5 7
0.3 0.3 0.2 0.2

)
;

SPACE=R64[x];

M1=[[0, 1], [0. 33333, 0. 66666]];

M2=[[1, 2], [0. 25, 0. 75]];

g=\addQU(M1, M2);

g1= \multiplyQU(M1, M2);

\print(g, g1);

Returns:
in: SPACE = R64[x];

M1 =

(
0 1

0.33333 0.66666

)
;

M2 =

(
1 2

0.25 0.75

)
;

g = addQU(M1,M2);
g1 = multiplyQU(M1,M2);
print(g, g1);

out: g =

(
1 2 3

0.08 0.41 0.49

)
;

g1 =

(
0 1 2

0.33 0.16 0.49

)
;

SPACE=R64[x];

M=[[-7, -2, 0, 3, 5, 7, 9],

[0.3, 0.05, 0.2, 0.1, 0.1, 0.2, 0.05]];

V=[-10, 10, 0, 1];

\plotPolygonDistribution(M, V);

Returns:
in: SPACE = R64[x];

M =

(
−7 −2 0 3 5 7 9
0.3 0.05 0.2 0.1 0.1 0.2 0.05

)
;

V = [−10, 10, 0, 1];

134

plotPolygonDistribution(M,V);
out: Pic. 10.1.

Figure 10.1: Polygon of distributions of discrete random variable from
the example.

10.2. Function for sampling

Function for sampling:
W-matrix of a single line. For example, [1, 7, 10, 15].
\sampleMean(S) calculates the sample mean of the sample S.
\sampleDispersion(S) calculates the sample variance of the sam-

ple S.
\covarianceCoefficient(S1, S2) calculates the coefficient of covari-

ance for 2 sampling S1 and S2.
\correlationCoefficient(S1, S2) calculates the correlation coeffi-

cient for 2 sampling S1 and S2.
Example

SPACE=R[x, y];

S1=[0, 1];

135

S2=[1, 2];

g=\sampleMean(S1);

g1=\sampleDispersion(S1);

g2=\covarianceCoefficient(S1, S2);

g3=\correlationCoefficient(S1, S2);

\print(g, g1, g2, g3);

Returns:
in: SPACE = R[x, y];

S1 = [0, 1];
S2 = [1, 2];
g = sampleMean(S1);
g1 = sampleDispersion(S1);
g2 = covarianceCoefficient(S1, S2);
g3 = correlationCoefficient(S1, S2);
print(g, g1, g2, g3);

out: g = 0.5;
g1 = 0.25;
g2 = 0.25;
g3 = 1.00.

136

Chapter 11

Operators of control.
Procedural programming

11.1. Procedures and functions

Mathpar system lets you create your procedures and functions. To do
this, use the command \procedure. After the command \procedure,
you must specify the name of the procedure, and then in the curly
brackets describes the procedure itself.

Example.

\procedure myProc2() {

d = 4;

\print(d);

}

\procedure myProc(c, d) {

if (c < d) {

\return d;

} else {

\return d + 5;

}

}

\myProc2();

a = 10;

c = \myProc(5 + a, a);

\print(a, c);

137

Returns:
d = 4; a = 10; c = 15.

11.2. Operators of branching and looping

You can use the operators of branching and looping:
\if() { } \else { } — the operator of branching;
\while() { } — cycle operator with precondition;
\for(; ;) { } — cycle operator with the counter.

Examples:
a = 5;

b = 1;

if(b < a) {

b = b + a;

} else {

\print(a, b);

}

if(b < a) {

b = b + a;

} else {

\print(a, b);

}

Returns:
a = 5; b = 6;

a = 0;

b = 10;

while(a < b) {

a = a + 5;

\print(a);

}

Returns:
a = 5; a = 10;

for (i = 3; i \le 11; i = i + 5) {

\print(i);

}

138

Returns:
i = 3; i = 8.

139

Chapter 12

Calculations in
idempotent algebras

12.1. Tropical algebras

You can work in the following tropical algebras :
SEMIFIELDS

1) On the set of integers mathbbZ we define:
ZMaxPlus, ZMinP lus.
2) On the set of numbers R we define:
RMaxPlus, RMinP lus, RMaxMult, RMinMult.
3) On the set of numbers R64 we define:
R64MaxPlus, R64MinPlus, R64MaxMult, R64MinMult.

SEMIRINGS
1) On the set of numbers Z we define:
ZMaxMin, ZMinMax, ZMaxMult, ZMinMult.
2) On the set of numbers R we define:
RMaxMin, RMinMax.
3) On the set of numbers R64 we define:
R64MaxMin, R64MinMax.

Examples of tropical algebras:
SPACE = ZMaxPlus [x, y, z];
SPACE = R64MinMult [u, v];
SPACE = RMaxMin [u, v].

140

An example of a simple problem in a semiring ZMaxMult.

Example 1.

SPACE = ZMaxMult[x, y];

a = 2; b = 9; c = a + b; d = a*b; \print(c, d)

Returns:
c = 9;
d = 18.

In the remaining sections of this chapter we have given some ex-
amples of problems that are solved in the tropical algebra, which are
semi-fields.

12.2. Solving systems of linear algebraic
equations

The command \solveLAETropic(A, b) enables us to find a particu-
lar solution of the system Ax = b.

Example 2.

SPACE = R64MaxPlus[x, y];

A = [

[1.00, 1.00, 0.00],

[2.00, 0.00, 3.00],

[3.00, 4.00, 2.00]

];

b = [8.00, 7.00, 11.00];

X = \solveLAETropic(A, b);

\print(X);

Returns:

X =

 5.00
7.00
4.00

12.3. Solving systems of linear algebraic in-

equalities

The command \solveLAITropic(A, b) enables us to find a particular
solution of the system of inequalities

141

Example 3.

SPACE = R64MaxPlus[x, y];

A = [

[1.00, 1.00, 0.00],

[2.00, 0.00, 3.00],

[3.00, 4.00, 2.00]

];

b = [10.00, 7.00, 11.00];

X = \solveLAITropic(A, b);

\print(X);

Returns:
X = [(−∞, 5.00], (−∞, 7.00], (−∞, 4.00]]

Example 4.

SPACE = ZMinPlus[x, y];

A = [

[1, 1, 0],

[2, 0, 3],

[3, 4, 2]

];

b = [10, 7, 11];

X = \solveLAITropic(A, b);

\print(X);

Returns:
X = [[9,∞), [9,∞), [10,∞)]

12.4. The solution of the Bellman equation

12.4.1. The homogeneous Bellman equation

The command \BellmanEquation(A) enables us to find a solution of
the homogeneous Bellman equation Ax = x.

Example 5.

SPACE = R64MaxPlus[x, y]; TIMEOUT = 16;

A = [

[0.00, -2.00, -\infty, -\infty],

[-\infty, 0.00, 3.00, -1.00],

142

[-1.00, -\infty, 0.00, -4.00],

[2.00, -\infty, -\infty, 0.00]

];

X = \BellmanEquation(A);

\print(X);

Returns:

X =

0.00 −2.00 1.00 −3.00
2.00 0.00 3.00 −1.00
−1.00 −3.00 0.00 −4.00
2.00 0.00 3.00 0.00

v1
v2
v3
v4

 ,∀v1, v2, v3, v4.

12.4.2. The inhomogeneous Bellman equation

The command \BellmanEquation(A, b) enables us to find a solution of
the inhomogeneous Bellman equation Ax⊕ b = x.

Example 6.

SPACE = R64MaxPlus[x, y]; TIMEOUT = 16;

A = [

[0.00, -2.00, -\infty, -\infty],

[-\infty, 0.00, 3.00, -1.00],

[-1.00, -\infty, 0.00, -4.00],

[2.00, -\infty, -\infty, 0.00]

];

b = [[1], [-\infty], [-\infty], [-\infty]];

X = \BellmanEquation(A, b);

\print(X);

Returns:

X =

0.00 −2.00 1.00 −3.00
2.00 0.00 3.00 −1.00
−1.00 −3.00 0.00 −4.00
2.00 0.00 3.00 0.00

v1
v2
v3
v4

⊕

1.00
3.00
0.00
3.00

 ,

∀v1, v2, v3, v4.

143

12.5. The solution Bellman inequality

12.5.1. The homogeneous Bellman inequality

The command \BellmanInequality(A) enables us to find a solution of
the homogeneous Bellman inequality Ax ⩽ x.

12.5.2. The inhomogeneous Bellman inequality

The command \BellmanInequality(A, b) enables us to find a solution
of the inhomogeneous Bellman inequality Ax⊕ b ⩽ x.

12.6. Finding the shortest path between
the vertices of the graph

12.6.1. Calculation of the table of shortest distances
for all vertices of the graph

Let A = (xij) be matrix of distances between adjacent vertices. We put
xii=0 ∀i and we put xij = ∞, if there is no edge connecting vertices i
and j. The command \searchLeastDistances(A) allows you to find the
smallest distance between all the nodes of the graph. This results in a
matrix of shortest paths between all vertices.

Example 7.

SPACE = R64MinPlus[x, y]; TIMEOUT = 16;

A = [

[0.00, 7.00, 9.00, \infty, \infty, 14.00],

[7.00, 0.00, 10.00, 15.00, \infty, \infty],

[9.00, 10.00, 0.00, 11.00, \infty, 2.00],

[\infty, 15.00, 11.00, 0.00, 6.00, \infty],

[\infty, \infty, \infty, 6.00, 0.00, 9.00],

[14.00, \infty, 2.00, \infty, 9.00, 0.00]

];

B = \searchLeastDistances(A);

\print(B);

144

Returns:

B =

0.00 7.00 9.00 20.00 20.00 11.00
7.00 0.00 10.00 15.00 21.00 12.00
9.00 10.00 0.00 11.00 11.00 2.00
20.00 15.00 11.00 0.00 6.00 13.00
20.00 21.00 11.00 6.00 0.00 9.00
11.00 12.00 2.00 13.00 9.00 0.00

12.6.2. Calculation of the shortest distances be-

tween two vertices of the graph

Let A = (xij) be matrix of distances between adjacent vertices. We put
xii=0 ∀i and we put xij = ∞, if there is no edge connecting vertices i
and j.

The command \findTheShortestPath(A, i, j) allows you to find the
shortest path between nodes i and j.

Example 8.

SPACE = R64MinPlus[x, y]; TIMEOUT = 16;

A = [

[0.00, 7.00, 9.00, \infty, \infty, 14.00],

[7.00, 0.00, 10.00, 15.00, \infty, \infty],

[9.00, 10.00, 0.00, 11.00, \infty, 2.00],

[\infty, 15.00, 11.00, 0.00, 6.00, \infty],

[\infty, \infty, \infty, 6.00, 0.00, 9.00],

[14.00, \infty, 2.00, \infty, 9.00, 0.00]

];

X = \findTheShortestPath(A, 0, 4);

\print(X);

Returns:
X = [[0, 2, 5, 4]]

145

Chapter 13

The calculations on a
supercomputer

In order to solve computational problems that require large computation
time or large amounts of memory, the system has special functions that
provide the user with resources of supercomputer. These functions allow
you to perform calculations on a dedicated set of cores. The number of
kernels ordered by the user.

You have the following functions (3ar-functions) that apply to su-
percomputer:

1) \matMultPar1x8 — calculation of the matrix product;

2) \adjointDetPar — computation of the adjoint matrix and de-
terminant;

3) \charPolPar — computation of the characteristic polynomial of
a matrix;

4) \polMultPar — computation of the product of two polynomials;

5) \BellmanEquationParA — solution of a homogeneous Bellman
equation Ax = x;

6) \BellmanEquationParA, b — solution of an inhomogeneous
Bellman equation Ax+ b = x;

7) \BellmanInequalityParA — solution of a homogeneous Bell-
man inequality Ax ⩽ x;

8) \BellmanInequalityParA, b — solution of an inhomogeneous
Bellman inequality Ax+ b ⩽ x;

Before applying any of these functions, the user must specify the

146

parameters that define the parallel environment:

TOTALNODES — total number of processors (cores), which pro-
vides for the computation

PROCPERNODE — number of cores on a single node,

CLUSTERTIME — maximum time (in minutes) execution of the
program, after which the program is forced to end.

MAXCLUSTERMEMORY — amount of memory allocated for
the JVM for a one process (for -Xmx parameter).

To set the number of cores on a single node the user must
know what a cluster is used and how many cores it is avail-
able on the node. By default, the TOTALPROCNUMBER and
NODEPROCNUMBER installed so that all the cores were used per
node, and CLUSTERTIME = 1.

The user can change the number of cores on a single node. This is
an important feature, since the memory on a single node is used by all
NODEPROCNUMBER cores. Consequently, the user can regulate
the size of of RAM that is available to one core.

13.1. Parallel polynomial computations

For parallel computation of the polynomial product you can use the
\multiplyPar(p1, p2), where p1, p2 — given polynomials.

Example.

TOTALNODES=2;

PROCPERNODE=1;

CLUSTERTIME=1;

f=x^2+3y;

g=x^2+3y+3z;

\polMultPar(f,g);

13.2. Parallel matrix computations

For parallel computing products of matrices m1 and m2 you must
use the \multiplyPar(m1,m2).

Example.

147

TOTALNODES = 2;

PROCPERNODE = 1;

A=[[0,1],[2,3]];

B=[[5,61],[7,8]];

\matMultPar1x8(A, B);

For parallel computation of the adjoint matrix for the matrix m you
can use the \adjointPar(m).

Similarly, for the matrix m you can perform the calculation of the
echelon form \echelonFormPar(m), the computation of the determi-
nant \detPar(m), computation of the kernel \kernelPar(m), the cal-
culation of the characteristic polynomial \charPolPar(m). The com-
mand \adjointDetPar(m) allows us to calculate the determinant and
adjoint matrix simultaneously.

Example.

TOTALNODES = 2;

PROCPERNODE = 1;

SPACE = Z[x];

A=[[0,1],[2,3]];

\adjointDetPar(A);

section Running your parallel programs Mathpar allows you to
download and execute your parallel programs. Your package must be
in the root directory of the project. To ensure that your program is
able to interact with the system management tasks, you need to add an
initialization string

QueryResult queryRes = Tools.getDataFromClusterRootNode
(args)
(immediately after MPI.Init) and the completion string

Tools.sendFinishMessage (args)
(before MPI.Finalize) in your main-method. You can also pass any ar-
guments to your program from the web-interface Mathpartner. Within
the program you can get them by calling queryRes.getData (). Below
is an example of a parallel program that simply outputs on standard
output the arguments passed to it.

MPI.Init(args);

QueryResult queryRes=Tools.getDataFromClusterRootNode(args);

int myRank=MPI.COMM_WORLD.getRank();

148

if (myRank == 0) {

Object []ar=queryRes.getData();

System.out.println("test...");

for (int i=0; i<ar.length; i++){

System.out.println(((Element)ar[i]).intValue());

}

}

Tools.sendFinishMessage(args);

MPI.Finalize();

After that you need to compile the program, and the program folder
packed in zip-archive.Then you need to download this file to the server,
using the tab ”File” and clicking ”download file”.

RAM is divided equally between all cores. For example, if the clus-
ter node has 8GB of memory, then if you request 4 cores on a single
processor, each will receive 2GB, and if you have requested one core -
then it will get 8GB.

The command to download your zip-archive, which contains java-
classes, as follows:

\uploadToCluster(FileName), where FileName - name of zip-
archive.

To view a list of all your downloaded files on a cluster, use the
command

\showFileList().

To run your program, use the command

\runUploadedClass(archieveName, classPath, param0, param1, ...),
where archieveName - the name of the downloaded zip-archive with
the program, classPath - the path to the class containing main-method
(full path with the packages) paramX - arbitrary parameters specified
separated by commas, to be passed to your program.

To monitor the running programs, use the command

\getStatus(taskID)

It is also possible to get a list of all the tasks of the current user with
a description of their states:

\showTaskList()

To receive the content from the output stream and error stream, use
the commands

\getOut(taskID)

149

\getErr(taskID)
Files that contain output or error stored on a cluster of two days,

zip-archives containing the compiled java-classes are stored for 30 days.

150

Chapter 14

Operators and
mathematical symbols

Naming rules for Mathematical Objects

Uppercase and lowercase letters are different everywhere. The user
can give any names for mathematical objects. However, these names
should not coincide with the operators and constants that are defined
in the system. In addition, the names of objects, of which the multi-
plication is not commutative, for example, vectors and matrices, must
begin with a capital Latin letters, and all other object names must start
with lowercase letters. This makes it possible as soon as entering auto-
matically get a simplified expression.

Here is a list of the main operators of the system Mathpar.
\clean — clean input data (if this operator doesn’t have arguments)

or the date of arguments of this operator,

Infix arithmetic operators
+ — addition;
- — subtraction;
/ — division;
* — multiplication (still a blank or absence of the operator);
\times — noncommutative multiplication(still a blank or absence

of the operator);

151

Postfix arithmetic operators
! — factorial;
x̂ {exp} — exponentiation;

Comparisons
\le — less than or equal to;
> — greater than;
< — less than;
\ge — greater than or equal to;
== — it is equal;
\ne — it is unequal;

Infix Boolean operators
\lor — disjunction (logic OR);
\& — conjunction (logic AND);
\neg — negation.
Key prefix operators
\d — the symbol of derivative, wich is usualy used in the differential

equations,
\D — the operator of differentiation: \D(f) and \D(f, x) are the

first derivative by x; \D(f, y ̂ 3) is the third derivative by y;
\expand — opening all brackets;
\fullExpand — to expand expression containing logarithmic, ex-

ponential and trigonometric functions;
\extendedGCD — extended polynomial GCD, returns a vector

containing GCD and additional multipliers of arguments;
\GCD — GCD of polynomials;
\factor — to factor expression;
\fullFactor — to factor expression containing logarithmic and ex-

ponent functions;
\initCond — boundary conditions for a system of linear differential

equations;
\LCM — polynomial LCM;
\lim — the limit of an expression;
\print — the print operator of the expressions, the names of which

are listed in this operator (each expression printed in the new line);
\printS — the print operator, which is similar to the Pascal print

operator(for printing in several lines you can use the symbol “\n”;

152

\plot — to plot explicit functions;
\plot3D — to plot functions of two variables, which are given ex-

plicitly;
\paramPlot — to plot parametric functions;
\tablePlot — to plot of function, which are presented by the table

of arguments and values;
\prod — the symbol of product (

∏
);

\randomPolynom — to generate a random polynomial;
\randomMatrix — to generate a random matrix;
\randomNumber — to generate a random number;
\sequence — the sequence;
\showPlots — to display at one field of schedules of functions of

different types;
\solveLDE — to solve system of the linear differential equations;
\systLAE — to set the system of the linear algebraic equations;
\systLDE — to set the system of the linear differential equations;
\sum — a summation symbol (

∑
);

\time — this operator returns the processor time in milliseconds;
\value — to calculate value of expression by means of substitution

of the expressions (or numbers) instead of ring variables;

Operators of the procedure, branching and loop
\procedure — ad procedures;
if(){ }else{ } — operator of the branch;
while(){ } — operator of the cycle with a precondition;
for(; ;){ } — cycle operator with a counter.

Matrix, matrix elements and matrix operators
[,] — setting vector (row-vector);
[[,], [,]] — the matrix may be defined as vector of vectors;
A {i,j} — (i,j)-element of the matrix A;
A {i,?} — row i of the matrix A;
A {?,j} — j column of the matrix A;
\O {n,m} — zero matrix of size n×m;
\I {n,m} — n×m matrix with ones on the diagonal;
+, -, * — addition, subtraction, multiplication;
\rowNumb() — number of rows of the matrix (or vector);
\colNumb() — number of columns of the matrix (or vector);

153

\size() — both dimensions of the matrix (or number of components
of the vector);

\charPolynom() — calculation of a characteristic polynomial;
\kernel() — calculation of a kernel (zero-space of matrix);
\transpose() or A T̂ — transposing;
\conjugate() or A {̂\ast} — conjugate;
\toEchelonForm() — calculation of the matrix echelon form;
\det() — calculation the determinant;
\rank() — calculation the rank;
\inverse() or A {̂−1} — calculation of the inverse of a matrix;
\adjoint() or A {̂\star} — calculation of the adjoint matrix;
\genInverse() or A {̂+} — generalized inverse of a matrix Moore-

Penrose;
\closure() or A {̂\times} — closure, i.e. the amount of I + A +

A2 +A3 + For the classical algebras is equivalent to (I −A)̂ {−1}.
\LSU() — LSU decomposition of a matrix. The result is a vector

of three matrices [L,S,U]. Where L is a lower triangular matrix, U —
upper triangular matrix, S — permutation matrix, multiplied by the
inverse of the diagonal matrix.

\LSUWMdet() — Result is a vector of 6 matrices
[L, S, U,W,M, [[det]]]. A = LSU, pseudoInverse(A) = (1/det2)WSM, det
is a nonzero maximum in size angular minor.

\BruhatDecomposition() — Bruhat decomposition of a matrix.
The result is a vector of three matrices [V,D,U]. Where V and U —
upper triangular matrices, D — permutation matrix, multiplied by the
inverse of the diagonal matrix.

\pseudoInverse() — Pseudo inverse of a matrix. It, unlike the
Moore-Penrose matrix, satisfies only two of the four identities. How-
ever, it is faster to compute;

\SVD() — SVD decomposition of a matrix over real numbers.
The result is a vector of three matrices [U,D, V T]. Here U, V T — are
orthogonal matrices, D is a diagonal matrix.

\QR() — QR decomposition of a matrix over real numbers. The
result is a vector of two matrices [Q,R]. Here Q — is an orthogonal
matrix, R — is an upper triangular matrix.

\sylvester(p1, p2, kind = 0or1) — the Sylvester matrix is con-
structed from the coefficients of the polynomials p1, p2. The ring Z [x,
y, z, u] will be considered as a ring Z[u][x, y, z] (ring in one variable u

154

with coefficients from Z[x, y, z].) If kind = 0, then the size of the matrix
is (n1 + n2), if kind = 1, then the size of the matrix is 2*max(n1, n2).

\cholesky(A) or \cholesky(A, 0) — Cholesky Decomposition of
a matrix. The matrix A must be symmetric and positive definite, only
in this case the expansion will be correctly calculated. \cholesky(A, 1)
you can use in the case of large dense matrices, starting from a size of
100x100. Here we used block multiplication according to the Winograd–
Strassen algorithm.

155

Chapter 15

Numerical Algorithms

15.1. Evaluation of definite and improper
integrals

15.1.1. Calculation of definite integrals.

The calculation of definite integrals is performed using the Gauss
method. To calculate a definite integral, you need to run the command:
Nint (f, a, b, epsilon, N); Where: (a, b) - integration interval, f - inte-
grand function, epsilon - the number of exact decimal places after the
decimal point (optional), N is the number of points in the Gaussian
formula (optional). The last three parameters can be omitted. The pre-
cision can be specified explicitly (using the epsilon parameter), or using
the MachineEpsilon constant in the current ring.

Examples.

SPACE=R[x];

f = \sin(x);

B = \Nint(f, 0, \pi);

\print(B);

Returns:
in: SPACE = R[x];

f = sin(x);
B = Nint(f, 0, π);
print(B);

156

out: B = 2.00.

SPACE = R[x]; FLOATPOS = 18;

MachineEpsilonR = 18/22 ;

f=2*\sqrt(1-x^2);

A=\Nint(f, -1,1);

B=\value(\pi);

\print(A,B);

Returns:
in: SPACE = R[x];FLOATPOS = 18;

MachineEpsilonR = 18/22;
f = 2 ∗ sqrt(1− x2);
A = Nint(f,−1, 1);
B = value(π);
print(A,B);

out: A = 3.141592653589793233
B = 3.141592653589793238

15.1.2. Calculation of improper integrals of the first
kind.

To calculate the improper integral on an infinite interval, you must run
the command: \Nint (f, a, b, [...], epsilon, N); Where: (a, b) - interval
of integration, where any of the boundaries of integration can be either
a finite number or pm infty; f - integrand function, [...] - extremum
points of the integrand in the interval (a, b) (optional), epsilon - the
number of exact decimal places after the decimal point (optional), N is
the number of points in the Gaussian formula (optional). The last three
parameters can be omitted.

If the extremum points are not indicated, then the correctness of
the result is ensured in the case when the integrand is monotonic on the
interval of integration.

Improper integrals of the first kind are calculated using the following
algorithm: Let, for definiteness, the interval of integration have the form:
[a, ∞). We consider the integral of the function f (x) with a step of 3N.
We get the segments: [a, a + 3N], [a + 3N, a + 6N], ... When the value

157

of the integral on the next segment becomes less than the value of the
integral on the previous segment, the step is increased by a factor of 10.
The calculation of the integral stops when the value of the integral in
the current segment becomes less than the value of the integral in the
previous segment and less than the machine zero (MachineEpsilon).

Examples

SPACE=R64[x];

f = \exp(-(x-5)^2);

B = \Nint(f, -\infty, \infty);

\print(B);

Returns:
in: SPACE = R64[x];

f = exp(−(x− 5)2);
B = Nint(f,−∞,∞);
print(B);

out: B = 1.77;.

SPACE=R[x];

f = \exp(-x);

B = \Nint(f, 0, \infty); \print(B);

Returns:
in: SPACE = R[x];

f = exp(−x);
B = Nint(f, 0,∞); print(B);

out: B = 1.00;.

158

Chapter 16

Examples of solutions of
physical problems

16.1. Transferring of the heat

"EXERCISE 1"

"A piece of ice which has mass"

M = 10 kg;

"was put in a vessel. The ice has temperature (\degreeC)"

T = -10 \degreeC ;

"Find the mass of water in a vessel after transferring the"

q = 20000 kJ

"amount of heat. Specific heat of water heating is equal"

c_v = 4.2 kJ/(kg \degreeC);

"Specific heat of ice heating is equal"

c_i = 2.1 kJ/(kg \degreeC);

"The heat of fusion of ice is equal"

r = 330 kJ/kg;

"Specific heat of vaporization of water is equal"

\lambda = 2300 kJ/kg;

END

"SOLUTION OF EX. 1."

SPACE = R64[x];

"Unknown mass of water is denoted by x.

159

The amount of heat: to heat the ice to 0 degrees:"

q_1 = M c_i (0 - T);

"to melt the ice:"

q_2 = M r;

"to heat water to 100 degrees:"

q_3 = M c_v (100 \degreeC);

"to evaporation of water"

q_4 = (M - x) \lambda;

"we denote by x unknown value."

"By assumption, we obtain the equation"

mass = \solve(q = q_1 + q_2 + q_3 + q_4);

\print(mass);

16.2. Kinematics

"EXERCISE 2"

"Kinematic equation of motion of a point in a straight line (axis x)

has the form $x = c_1 + c_2 * t + c_3 t^3$."

"Define: (1) coordinate of a point, (2) the instantaneous velocity,

(3) the instantaneous acceleration "

END

"SOLUTION OF EX.2."

"Let us set the space with variables t, c_1, c_2, c_3:"

SPACE = R64[t, c_1, c_2, c_3];

"The equation of motion is"

x = c_1 + c_2 t + c_3 t^3;

"We can find the instant speed"

v = \D_t(x);

"We can find the instant acceleration"

a = \D_t(v);

\print(x, v, a);

"EXERCISE 2A"

"Solve the previous problem at a moment of time"

t_0 = 2 "seconds"

"with the following numerical values:

$c_1=4; c_2=2; c_3=-0.5$."

END

160

"SOLUTION OF EX.2A."

arg = [t_0, 4, 2, -0.5];

x_0 = \value (x, arg);

v_0 = \value (v, arg);

a_0 = \value (a, arg);

\print(x_0, v_0, a_0);

16.3. Molecular Physics

"EXERCISE 3"

"In the middle of the horizontal tube was placed a drop of mercury in length h."

"The air was pumped out of the tube and the ends

of the tube was sealed. Tube length is equal l."

"When the tube was placed vertically, a drop of mercury moved down by l_d."

"The acceleration of gravity is equal g."

"The density of mercury is equal ρ."

"What was the initial pressure in the tube?"

END

"SOLUTION OF EX. 3."

"Let the initial pressure p_0 be unknown:"

SPACE = R64[p_0];

"The pressure at the bottom of the tube increased, as added

pressure mercury drops, so new pressure is equal:"

p_1 = p_0 + \rho g h;

"Let S be the cross-sections of the tube. Then

the initial volume of air in the bottom of the tube is equal:"

v_0 = (l/2 - h/2) S;

"After turning the tube volume of air in the bottom of the tube is equal:"

v_1 = (l/2 - h/2 - l_d) S;

"According to Boyle{Mariotte law we have the equation:"

initialPressure = \solve(p_0 v_0 = p_1 v_1);

\print(initialPressure);

"EXERCISE 3A"

"Solve the previous problem with the following numerical values: "

h = 0.20 m;

l = 1 m;

161

l_d = 0.10 m;

"The acceleration of gravity is equal"

g = 9.8 m/s^2;

\rho = 13600 kg/m^3;

END

"SOLUTION OF EX. 3A."

p_1 = p_0 + \rho g h;

v_0 = (l/2 - h/2) S;

v_1 = (l/2 - h/2 - l_d) S;

initialPressure = \solve(p_0 v_0 = p_1 v_1);

\print(initialPressure);

16.4. Pendulum

"EXERCISE 4.The period of a simple gravity pendulum."

SPACE = R64[x]; FLOATPOS = 4;\\

"A point mass suspended from a pivot with a massless cord.

The length of the pendulum equals L = 1 metre."

"It swings under gravitational acceleration g = 9.80665

metres per second squared."

"The maximum angle that the pendulum swings

away from vertical, called the amplitude, equals"

\theta_0= (2/3) \pi;

"Find the period T of the pendulum using the arithmetic-geometric mean"

"$$T=\frac{2\pi}{\AGM(1,\cos(\theta_0/2))}\sqrt{\frac{L}{g}}$$"

END

"SOLUTION OF EX. 4."

\theta_0= (2/3) \pi;

w=\value(\cos(\theta_0/2));

Ts = 2*\pi*\sqrt{L/g}/(\AGM(1,w)); \print(w,Ts);

L = 1;

g = 9.80665;

T= \value(Ts); \print(T);

The results:
w = 0.5
Ts = 2.7458 ∗ π ∗ (L/g)(1/2)
T = 2.7546.

162

